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1 Linear Systems

A linear system has dynamics that can be represented as a linear equation. Let xt ∈ Rn denote the
state 1 of the system at time t. Let ut ∈ Rm denote the action (also called the control) taken by the
system at time t. Linear system dynamics can always be represented in terms of an equation of the
following form:

xt+1 = Axt +But, (1)

where A ∈ Rn×n is a constant n × n matrix and B ∈ Rn×m is a constant n × m matrix. Given
that the system takes action ut from state xt, this equation allows us to predict the state of the next
time step. The reason we call Equation 1 a linear equation is that is it linear in the variables, xt
and ut. 2 Another thing to notice about the above equation is that it is written in terms of the states
and actions taken at discrete time steps. As a result, we refer to this as a discrete time system.

A classic example of a linear system is the damped mass. Imagine applying forces to an object
lying on a frictional surface. Denote the mass of the object by m and the coefficient of friction
by b. Let rt, ṙt ∈ Rn, and r̈t ∈ Rn denote the position, velocity, and acceleration of the object,
respectively. There are three forces acting on the object. The inertial force at time t is mr̈t. The
frictional (viscous friction) force is bṙt. Let the applied force at time t be denoted ft. The motion of
the object is described by the following second order differential equation known as the equation
of motion:

mr̈t + bṙt = ft.

1State is assumed to be Markov in the sense that it is a sufficient statistic to predict future system behavior.
2If one of these variables were squared (for example, xt+1 = Ax2

t + But), then this equation would no longer be
linear.
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Suppose we want to write the equation of motion of the object in as a discrete time equation of the
form of Equation 1. Choose (arbitrarily) a period between successive time steps as 0.1 seconds.
The position at time t+ 1 is:

rt+1 = rt + 0.1ṙt. (2)

The velocity at time t+ 1 is:

ṙt+1 = ṙt + 0.1r̈t

= ṙt + 0.1
1

m
(ft − bṙt). (3)

Then Equations 2 and 3 can be written as a system of two equations as follows:(
rt+1

ṙt+1

)
=

(
1 0.1
0 1− 0.1 b

m

)(
rt
ṙt

)
+

(
0

0.1

)
ut.

This can be re-written as:
xt+1 = Axt +But,

where

xt =

(
rt
ṙt

)
,

A =

(
1 0.1
0 1− 0.1 b

m

)
,

and

B =

(
0

0.1

)
.

2 Control Via Least Squares

Consider an initial state, x1, and a sequence of T − 1 actions, u = (u1, . . . , uT−1)
T . Using

the system dynamics Equation 1, we can calculate the corresponding sequence of states. Let
x = (x1, . . . , xT )T be the sequence of T states such that Equation 1 is satisfied (the trajectory
of states visited by the system as a result of taking the action sequence, u). The objective of
control is to take actions that cause the following cost equation to be minimized:

J(x,u) = xTTQFxT +
T−1∑
t=1

xTt Qxt + uTt Rut, (4)

where Q ∈ Rn×n and QF ∈ Rn×n determine state costs and R ∈ Rm×m determines action costs.
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One way to solve the control problem for linear systems with quadratic cost functions is to solve
a least squares problem. Suppose that the sequence of actions, u = (u1, . . . , uT−1)

T , is taken
starting in state x1 at time t = 1. The state at time t = 2 is:

x2 = Ax1 +Bu1.

The state of time t = 3 is:

x3 = A(Ax1 +Bu1) +Bu2

= A2x1 + ABu1 +Bu2.

The state of time t = 4 is:

x4 = A(A2x1 + ABu1 +Bu2) +Bu3

= A3x1 + A2Bu1 + ABu2 +Bu3.

The entire trajectory of states over time horizon T can be calculated in a similar way:

x =



0 0 0 0 . . . 0
B 0 0 0 . . . 0
AB B 0 0 . . . 0
A2B AB B 0 . . . 0
A3B A2B AB B . . . 0

...
...

AT−1B AT−2B AT−3B AT−4B . . . B


u +



I
A
A2

A3

...
AT


x1

= Gu +Hx1. (5)

The cost function can also be “vectorized”:

J = xT


Q 0 . . . 0
0 Q . . . 0
...

...
0 0 . . . QF

x + uT


R 0 . . . 0
0 R . . . 0
...

...
0 0 . . . R

u

= xTQx + uTRu
= (Gu +Hx1)

TQ(Gu +Hx1) + uTRu (6)
(7)

The control problem can be solved by finding a u that minimizes Equation 7. This is a least squares
problem and can be solved using the pseudoinverse. For simplicity, assume thatR is zero. 3 In this
case, the objective is to find the u that minimizes the following L2 norm:

‖Q1/2Gu +Q1/2Hx1‖2.
3The case whereR is non-zero can be solved by writing Equation 7 as a quadratic form by completing the square.
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The least squares solution is:
u = (Q1/2G)+Q1/2Hx1, (8)

where (·)+ denotes the pseudoinverse 4

3 Control Via Dynamic Programming

Equation 8 calculates an optimal control, u, in the sense that no other control will achieve a lower
cost, J . However, it can be inconvenient to use the direct least squares method to calculate control
because of the need to create those big matrices. Moreover, the solution requires inverting a big
matrix. In this section, I introduce an alternative method for calculating the same solution that
uses the Bellman optimality equation 5. Let Vt(x) denote the optimal value function at x at time t.
Specifically, Vt(x) is equal to the future cost that would be experienced by the system if the optimal
policy is followed. This is similar to the way we defined the value function in Reinforcement
Learning (RL). However, whereas the value function in the RL section denoted expected future
rewards, the value function in this discussion denotes future costs.

The Bellman equation 6 is:

Vt(x) = min
u∈Rm

(
xTQx+ uTRu+ Vt+1(Ax+ bu)

)
. (9)

Assume that we somehow know 7 that the value function at time t+ 1 is a quadratic of the form,

Vt+1(x) = xTPt+1x, (10)

where Pt+1 is a positive semi-definite matrix 8. In this case, the Bellman equation becomes:

Vt(x) = xTQx min
u∈Rm

(
uTRu+ (Ax+ bu)TPt+1(Ax+ bu)

)
. (11)

In the above, we are minimizing a quadratic function. As a result, we can calculate the global
minimum by setting the derivative to zero:

0 =
∂

∂u

(
uTRu+ (Ax+ bu)TPt+1(Ax+ bu)

)
= 2uTR + 2xTATPt+1B + uTBTPt+1B.

4Recall that for a non-singular matrix A, A+ = (ATA)−1AT when A is tall (rows greater than columns) and
A+ = AT (AAT )−1 when A is fat (columns greater than rows).

5The same bellman optimality equation we studied in the section on Reinforcement Learning.
6Often called the Hamilton-Jacobi-Bellman equation in the controls literature.
7Leprechauns told us?
8A matrix is positive semi-definite if all its eigenvalues are non-negative.
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The optimal control is therefore:

u∗ = −(R +BTPt+1B)−1BTPt+1Ax. (12)

Substituting u∗ back into Equation 11, we have:

Vt(x) = xT
(
Q+ ATPt+1A− ATPt+1B(R +BTPt+1B)−1BTPt+1A

)
x (13)

= xTPtx.

Notice that this equation is exactly of the form of Equation 10. We have just shown that if it is
assumed that a linear system with quadratic costs has a value function of the form in Equation 10
at time t+ 1, then it will have the same form at time t. Furthermore, notice that the value function
on the final time step (at time T ) is exactly equal to the cost function (there are no future rewards
to take into account):

VT (x) = xTQFx.

As a result, we know that the value function for any linear system with quadratic costs is quadratic
for all time. Equation 14 tells us that if we are given the matrix Pt+1 that defines the value function
at t+ 1, then we can calculate Pt as follows:

Pt = Q+ ATPt+1A− ATPt+1B(R +BTPt+1B)−1BTPt+1A. (14)

This is known as the Differential Riccati Equation and is relevant to finite time horizon problems.

These are all the equations that we need to use finite horizon discrete time LQR. It is used as fol-
lows. First, identify a time horizon, T , over which control will occur. Second, set PT = QF . This
reflects the knowledge that on the final time step, there are no future rewards and the value function
is exactly equal to the cost function. Third, use the differential Riccati equation to calculate PT−1,
PT−2, and so on back to P1. At this point, we have a policy that can be used to calculate control
actions. On each time step, t, we take an action: u∗t = −(R +BTPt+1B)−1BTPt+1Axt.

Now, consider an infinite horizon problem. In this case, the Bellman equation (Equation 9) be-
comes:

V (x) = min
u∈Rm

(
xTQx+ uTRu+ V (Ax+ bu)

)
.

Performing a similar derivation to what we did before, we obtain:

P = Q+ ATPA− ATPB(R +BTPB)−1BTPA. (15)

This is known as the Discrete Algebraic Riccati Equation (DARE). The key thing to notice about
this equation is that P is no longer indexed by time. In order to use it, we solve Equation 15 for P 9.
The optimal policy is: u∗t = −(R+BTPB)−1BTPAxt. Notice that the policy no longer depends
upon the time index as it did in the finite horizon case. An important connection exists between
the finite and infinite horizon cases. As the time horizon, T , becomes large, the differential Riccati
equation converges to the solution to the DARE, regardless of the value of the final cost matrix,
QF .

9There are standard methods for solving the DARE. For example, Matlab has a function, DLQR, that does this.
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4 LQR Controllability

In control, the term controllable has an important technical meaning. A system is controllable if
for any initial state and any final state, a sequence of control actions exists that takes the system
from between the two states in finite time. For linear systems, the following important test can be
used to test controllability over a finite horizon, T : we check whether the following matrix has full
(row) rank 10: (

B,AB,A2B,A3B, . . . , AT−1B
)
.

Notice that if this matrix is full rank, then the bottom row of the G matrix in Equation 5 has full
rank. This means that for any x1 and any xT , a u exists that causes the system to reach xT .

5 LQR Stability

Another word with important technical meaning in control is stability. There are many slightly
different ways of defining stability. Here, we will use the following: a system is stable if, as
time goes to infinity, state remains within a constant radius of the origin. A system is closed-
loop stable if it is stable while being controlled by a given particular control policy. For linear
systems, stability can be evaluated by considering the eigenvalues of the relevant matrix. Consider
the following differential equation:

ẋt = Āxt. (16)

Since this is a first order differential equation, it can be integrated in closed form 11:

xt =
n∑
i=1

civie
λit, (17)

where n is the number of eigenvalues in Ā, ci is a constant, and vi and λi are the eigenvectors
and eigenvalues of Ā, respectively. Notice that the eigenvalues λi are in the exponent of the right
side terms of Equation 17. Therefore, this solution decays to zero when all eigenvalues are neg-
ative. If one eigenvalue is positive, then there is one term in the trajectory that goes to infinity
(exponentially) as time goes to infinity.

In the context of the current discussion, the question becomes: when is Equation 1 stable? Suppose
we are given Equation 16 and we wish to construct the discrete time system where the time between
successive discrete times is δ. Then we have:

xt+1 = (I + δĀ)xt.

10Full row rank means that all rows are linearly independent.
11This solution is found using the characteristic equation of the differential equation.
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This system will be stable if all the eigenvalues of I + δĀ are less than one. Therefore, the system
of Equation 1 is stable when all eigenvalues of A are less than one.
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