Kinematic Redundancy

vt

v * A manipulator may have more DOFs than
are necessary to control a desired variable

* What do you do w/ the extra DOFs?

* However, even if the manipulator has
“‘enough” DOFs, it may still be unable to
control some variables in some
configurations...



Jacobian Range Space

Before we think about redundancy, let’s look at the
range space of the Jacobian transform:

The velocity Jacobian maps joint velocities onto end
effector velocities: = (4)g
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Space of joint velocities  Space of end effector

 This is the domain of velocities

J: D(J ) * This is the range
space of J: R FJ
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Jacobian Range Space

Jla):0 -V H

In some configurations, the range space of the

Jacobian may not span the entire space of the o N ﬂ— __________
variable to be controlled: v'Hl
vy OV, vOR (Jv(q))

R(J (q)) spans J/ if DVDV,VDR(JV(Q))

v

Example: a and b span this two dimensional space:



Jacobian Range Space

ﬂ
This is the case in the manipulator to the right:
* In this configuration, the Jacobian does not span
the y direction (or the z direction) S N ﬂ—\
38 T || IR
yOV,yOR(J,(q)
o P4




Jacobian Range Space

°
Let’s calculate the velocity Jacobian: H
g_llsl —b8, —hS1y —hsy, —hsy _I3S123E
JV(Q) = Dllcl thc, + o, ley, +1iep, L3¢, []
B 0 0 0 H  weerenn A ﬂ_l ..........
H b
Joint configuration of manipulator: ¢ =0 []
K 1
L -L+L —L+L L0 z :/'@--»X
[] N
= 0 0 0H

There is no joint velocity, g , that will produce a y velocity, y = Jv(q)é

f

Therefore, you're in a singularity.



Jacobian Singularities

In singular configurations:

» J,(9) does not span the space of Cartesian
velocities €rennnaeent A ..&_‘

« J (q) loses rank

Test for kinematic singularity: o P4

o |If det[J(q)J(q)T] is zero, then manipulator is in ~ :/@---»x
a singular configuration

Example:
31, -1, +[, 00O :
O ] [Something 0[]
—L+lL O=detp B
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Jacobian Singularities: Example

The four singularities of the three-link planar arm:




Jacobian Singularities and Cartesian Control

Cartesian control involves calculating the inverse or
pseudoinverse:

gt =)

However, in singular configurations, the
pseudoinverse (or inverse) does not exist
because |JJ ) is undefined.

As you approach a singular configuration, joint
velocities in the singular direction calculated by
the pseudoinverse get very large:

g=J% =J"(JJ" " x, =big

In Jacobian transpose control, joint velocities in the
singular direction (i.e. the gradient) go to zero:

|

g=J"x =0 Where x, is a singular direction.

A



Jacobian Singularities and Cartesian Control

* So, singularities are mostly a problem for Jacobian
pseudoinverse control where the pseudoinverse
“blows up”.

* Not much of a problem for transpose control

* The worst that can happen is that the
manipulator gets “stuck” in a singular
configuration because the direction of the goal
IS in a singular direction.

* This “stuck” configuration is unstable — any
motion away from the singular configuration

will allow the manipulator to continue on its
way.

|




Jacobian Singularities and Cartesian Control

o
One way to get the “best of both worlds” is to use the H
“dampled least squares inverse” — aka the
singularity robust (SR) inverse:

7 :JT(JJT +k2])_1 € rmnnnnnnd $ ﬂ_\ ..........

 Because of the additional term inside the inversion,
the SR inverse does not blow up.

* Inregions near a singularity, the SR inverse trades |
off exact trajectory following for minimal joint . -/@---»x
velocities. *

BTW, another way to handle singularities is simply to
avoid them — this method is preferred by many

* More on this in a bit...



Manipulability Ellipsoid
Can we characterize how close we are to a singularity?

Yes — imagine the possible instantaneous motions are described by
an ellipsoid in Cartesian space.

Can’t move much this way




Manipulability Ellipsoid

The manipulability ellipsoid is an ellipse in
Cartesian space corresponding to the twists AR
that unit joint velocities can generate: N

qg'qg=1 <+— Aunit sphere in joint velocity space
(J#X)TJ#)'C =] <— Project the sphere into
Cartesian space

. T T
X

T o) k=1
T g =1 :

)'CT(JJT)_I)'C =] <— The space of feasible
Cartesian velocities



Manipulability Ellipsoid

You can calculate the directions and magnitudes
of the principle axes of the ellipsoid by taking
the eigenvalues and eigenvectors of jj7

* The lengths of the axes are the square roots
of the eigenvalues

Yoshikawa’'s manipulability measure: \/det(JJT)
* You try to maximize this measure
* Maximized in isotropic configurations

* This measures the volume of the ellipsoid



Manipulability Ellipsoid

Another characterization of the
manipulability ellipsoid: the ratio of the
largest eigenvalue to the smallest
eigenvalue:

* Let A, be the largest eigenvalue and let A
be the smallest.

* Then the condition number of the

ellipsoid is:
)

N

* The closer to one the condition number,
the more isotropic the ellispoid is.




Manipulability Ellipsoid

Isotropic manipulability NOT isotropic
ellipsoid manipulability ellipsoid



Force Manipulability Ellipsoid

You can also calculate a manipulability ellipsoid
for force:

I'T=1 < Aunit sphere in the space of joint torques

r=J'F
JTF) JTF =1

F'JJ'F =1 <«— The space of feasible Cartesian wrenches



Manipulability Ellipsoid

Principle axes of the force manipulability ellipsoid: the
eigenvalues and eigenvectors of: (JJT)—I

. (JJT)_1 has the same eigenvectors as JJ' : Viv = Vif

* But, the eigenvalues of the force and velocity ellipsoids
are reciprocals:

* Therefore, the shortest principle axes of the velocity
ellipsoid are the longest principle axes of the force
ellipsoid and vice versa...



Velocity and force manipulability are orthogonal!

This is known as force/velocity duality

-—>

* You can apply the largest forces in the same
directions that your max velocity is smallest

* Your max velocity is greatest in the directions where
you can only apply the smallest forces



Manipulability Ellipsoid: Example

Solve for the principle axes of the manipulability
ellipsoid for the planar two link manipulator with unit

length links at %E
q —

J(q) _ +is, —lys,, —Ls,0

[] []
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Kinematic redundancy .

A general-purpose robot arm frequently has
more DOFs than are strictly necessary to
perform a given function

* in order to independently control the position
of a planar manipulator end effector, only
two DOFs are strictly necessary

* If the manipulator has three DOFs, then
it is redundant w.r.t. the task of
controlling two dimensional position.

* In order to independently control end
effector position in 3-space, you need at

least 3 DOFs

* In order to independently control end
effector position and orientation, at least 6
DOFs are needed (they have to be

configured right, too...)
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Kinematic redundancy .

The local redundancy of an arm can be
understood in terms of the local Jacobian

* The manipulator controls a number of
Cartesian DOFs equal to the number of
independent rows in the Jacobian

Dill j12 j13|:|

J =0 : . [ «——_ Since there are two independent
a1 J22 Jos Ll rows, you can control two
T Cartesian DOFs independently
(m=2)

You use three joints to control two
Cartesian DOFs (n=3)

Since the number of independent Cartesian directions is less than the
number of joints, (m<n), this manipulator is redundant w.r.t. the task of
controlling those Cartesian directions.



Kinematic redundancy .

What does this redundant space look like?

* At first glance, you might think that it's
linear because the Jacobian is linear

* But, the Jacobian is only locally linear

The dimension of the redundant space is the
number of joints — the number of independent
Cartesian DOFs: n-m.

* For the three link planar arm, the redundant

space is a set of one dimensional curves /\/
traced through the three dimensional joint M

space.

* Each curve corresponds to the set of joint

configurations that place the end effector in . .
the same position. Redundant manifolds in

joint space




Kinematic redundancy .

Joint velocities in redundant directions 3y 4T

causes no motion at the end effector b Z

2 UE 2 .

* These are internal motions of the e \ly\ﬂ x

manipulator. ) a0 s

v
2y 0

Redundant joint velocities satisfy this i o/,

equation: (0 =J(q)g 047 X

!

the null space of J(q)

N
= ‘xm ):0=J(q)q M
NJ(9) ={g00:0=7(9)d) %

Compare to the range space of J(q):

R(J(¢)) :{jc OX: 00, x = J(q)q'} Redundant manifolds in
joint space




Null space and Range space

Joint space Cartesian space
0 0S0(n-1) %= J(q)q XOR"

. You can’t generate
N(J(q)) = [q 00:0= J(q)q} these motions

Null space : . Co :
- R(J(9) ={3 DX : 700, 5 = I (9)4]
Motions in the null space

are internal motions Range space



Null space and Range space

Degree of manipulability: dim(R(J(q)))

Degree of redundancy: dim(N(J(q)))

dim(N (J (q))) + dim(R(J (q))) = total DOF of manipulator




Null space and Range space

As the manipulator moves to new configurations, the degree of
manipulability may temporarily decrease — these are the
singular configurations.

* There is a corresponding increase in degree of redundancy.

x=J(q)q

—_—
.*—
—_—
—_—




Null space and Range space

Remember the Jacobian’s application to statics: 7 =J(q)' F
R(J () =N\ (g)"
NJ(@) =R\ (@)




Null space and Range space in the Force




Null space and Range space in the Force

R(J(g)) = N"
N(J(g)) = R"

J(q)"
J(q)"

* A Cartesian force cannot generate joint torques in the joint
velocity null space.




Doing Things in the Redundant Joint Space

Motions in the redundant space do not affect the
position of the end effector.

* Since they don’t change end effector
position, is there something we would like to
do in this space?

* Optimize kinematic manipulability?
« Stay away from obstacles?

* Something else?



Doing Things in the Redundant Joint Space

Assume that you are given a joint velocity, QO,
you would like to achieve while also
achieving a desired end effector twist, X,

- Required objective: X,

* Desired objective: %
F@=g-4,)"(¢4,)
g(q)=Jg—x

Minimize f (z) subjectto g(z) =0 :

Use lagrange multiplier method: [_f(z) = Al_g(z)



Doing Things in the Redundant Joint Space

O =(G-40)"

g =J

U,/ (z) =AU, g(2)
(g-4,)" =A"J
q=J"A-4q,
JJTA=4,) = x

A=) (5 - uq,)
g =" (7] (=) + 4,
g=Jx+1-J"7)g,



Doing Things in the Redundant Joint Space

g=J+1-0"0)q,
(N

J

~

f

Homogeneous part of the solution

Null space projection matrix: 7 —J"J

* This matrix projects an arbitrary vector into the null
space of J

* This makes it easy to do things in the redundant
space — just calculate what you would like to do and
project it into the null space.



Things You Might do in the Null Space

Avoid kinematic singularities:

1. Calculate the gradient of the
manipulability measure: g, = D\/det(JJT)

2. Projectinto null space: g =J"x+ ([ —J#J)qo

Avoid joint limits:

1. Calculate a gradient of the
squared distance from a joint

imit 4, =alq, —q)
2. Project into null space: qg=J"x+ ([ _J#J)%
* where 9 is the joint configuration at the center of the joints

* and (¢ is the current joint position



Things You Might do in the Null Space
xd\

obstacle

Avoid kinematic obstacles:

1. Consider a set of control points

X
(nodes) on the manipulator: {xl,xz,x3} 1
2. Move all nodes away from the
ObjeCt: Dxi = xi _xobstacle 0Z <o
3. Project desired motion into
joint space: g, = JZ.TDxl.
illnodes

4. Project into null space: g=J'x+ (1 _J#J)%
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