Kalman Filter

I've got it!

- Sequential Bayes Filtering is a general approach to state estimation that gets used all over the place.
- But, implementations like histogram filters or Kalman filters are computationally complex.
- Is it always this way? Is Bayes filtering ever simple?

Why Kalman filtering?

In general: state estimation

Kalman filters are particularly well suited for tracking moving objects

Review of sequential Bayes filtering

Process update: $P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
Measurement update:

$$
P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right)
$$

Review of sequential Bayes filtering

Image: Thrun et al., Probabilistic Robotics

Transition function

Recall the state transition function:

- this probability can be expressed as a table: | $P\left(x_{t+1} \mid x_{t}\right)$ | x_{t} |
| :--- | :--- |
| | |

Can also be expressed as a function:

$$
x_{t+1}=f\left(x_{t}\right)+w_{t} \quad w_{t} \sim N\left(w_{t} \mid 0, Q\right)
$$

or: $P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid f\left(x_{t}\right), Q\right)$

Linear system

A linear system is any system where:

$$
P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}, Q\right)
$$

(technically, this is a linear Gaussian system)
Also written: $\quad x_{t+1}=A x_{t}+w_{t} \quad w_{t} \sim N\left(w_{t} \mid 0, Q\right)$

Linear system: Example

Equation of motion: $0=m \ddot{y}+b \dot{y}+k y$
How get it into this form? $\quad x_{t+1}=A x_{t}+w_{t}$

Linear system: Example

Equation of motion: $0=m \ddot{y}+b \dot{y}+k y$
How get it into this form? $\quad x_{t+1}=A x_{t}+w_{t}$
Integrate forward one

$$
y_{t+1}=y_{t}+\dot{y} d t
$$

$$
x=\binom{y}{\dot{y}}
$$

$$
\binom{y_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
1 & d t \\
-\frac{k}{m} d t & 1-\frac{b}{m} d t
\end{array}\right)\binom{y_{t}}{\dot{y_{t}}}+w_{t}
$$

Linear system

A linear system is any system where:

$$
P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}, Q\right)
$$

(technically, this is a linear Gaussian system)

Also written: $\quad x_{t+1}=A x_{t}+w_{t} \quad w_{t} \sim N\left(w_{t} \mid 0, Q\right)$

Also, assume that the observation function is linear Gaussian:

$$
\begin{aligned}
& P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid C x_{t+1}, R\right) \\
& \quad z_{t+1}=C x_{t+1}+r_{t+1} \quad r_{t} \sim N\left(r_{t} \mid 0, R\right)
\end{aligned}
$$

Kalman Idea

Kalman Idea

Gaussians

Univariate Gaussian: $\quad P(x)=\eta e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}$
Multivariate Gaussian: $\quad P(x)=\eta e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}$

$$
P(x)=N(x ; \mu, \Sigma)
$$

Playing w/ Gaussians

Suppose: $\quad P(x)=N(x ; \mu, \Sigma)$

$$
y=A x+b
$$

Calculate: $\quad P(y)=$?

$$
P(y)=N\left(y ; A x+b, A \Sigma A^{T}\right)
$$

In fact

$$
\begin{array}{ll}
\text { Suppose: } & P(x)=N(x ; \mu, \Sigma) \\
& y=A x+b
\end{array}
$$

Then:

$$
P\binom{x}{y}=N\left[\begin{array}{cc}
x & \\
y & \\
y & A \mu+b
\end{array},\left(\begin{array}{cc}
\Sigma & \Sigma A^{T} \\
A \Sigma & A \Sigma A^{T}
\end{array}\right)\right]
$$

Illustration

Image: Thrun et al., CS233B course notes

And

Suppose: $\quad P(x)=N(x ; \mu, \Sigma)$

$$
P(y \mid x)=N(y ; A x+b, R)
$$

Then:
$P\binom{x}{y}=N\left[\begin{array}{cc}x & \\ y & : \\ y & A \mu+b\end{array},\left(\begin{array}{cc}\Sigma & \Sigma A^{T} \\ A \Sigma & A \Sigma A^{T}+R\end{array}\right)\right]$

$$
P(y)=N\left(y ; A \mu+b, A \Sigma A^{T}+R\right)
$$

Marginal distribution

Does this remind us of anything?

Does this remind us of anything?

$\begin{aligned} & \text { Process update } \\ & \text { (discrete): }\end{aligned} P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
Process update (continuous):

$$
P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)
$$

Does this remind us of anything?

$\begin{aligned} & \text { Process update } \\ & \text { (discrete): }\end{aligned} P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
Process update (continuous):

$$
P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)
$$

Transition dynamics
prior

Does this remind us of anything?

$\begin{aligned} & \text { Process update } \\ & \text { (discrete): }\end{aligned} P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
Process update (continuous):

$$
P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)
$$

Transition dynamics
prior

$$
\begin{aligned}
& P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} N\left(x_{t+1} \mid A x_{t}, Q\right) N\left(x_{t} ; \mu_{t}, \Sigma_{t}\right) \\
& P\left(x_{t+1} \mid z_{0: t}\right)=N\left(x_{t+1} \mid A \mu_{t}, A \Sigma_{t} A^{T}+Q\right)
\end{aligned}
$$

Observation update

Observation update: $P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right)$

Where: $\mu_{t}^{\prime}=A \mu_{t}$
$\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q$

Observation update

Observation update: $P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right)$

$$
\begin{aligned}
& N\left(z_{t+1} \mid C x_{t+1}, R\right) \\
& N\left(x_{t} \mid \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right) \\
& \text { Where: } \mu_{t}^{\prime}=A \mu_{t} \\
& \Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
\end{aligned}
$$

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=\eta N\left(z_{t+1} \mid C x_{t}, R\right) N\left(x_{t} ; \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right)
$$

Observation update

Observation update: $P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right)$

$$
\begin{aligned}
& N\left(z_{t+1} \mid C x_{t+1}, R\right) \\
& \quad N\left(x_{t} \mid \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right) \\
& \text { Where: } \mu_{t}^{\prime}=A \mu_{t} \\
& \Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
\end{aligned}
$$

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=\eta N\left(z_{t+1} \mid C x_{t}, R\right) N\left(x_{t} ; \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right)
$$

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=N\left[\begin{array}{ccc}
x_{t+1} & : & \mu_{t}^{\prime} \\
z_{t+1} & & C \mu_{t}^{\prime}
\end{array},\left(\begin{array}{cc}
\Sigma_{t}^{\prime} & \Sigma_{t}^{\prime} C^{T} \\
C \Sigma_{t}^{\prime} & C \Sigma_{t}^{\prime} A^{T}+R
\end{array}\right)\right]
$$

Observation update

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=N\left[\begin{array}{ccc}
x_{t+1} & : & \mu_{t}^{\prime} \\
z_{t+1} & C \mu_{t}^{\prime}
\end{array},\left(\begin{array}{cc}
\Sigma_{t}^{\prime} & \Sigma_{t}^{\prime} C^{T} \\
C \Sigma_{t}^{\prime} & C \Sigma_{t}^{\prime} A^{T}+R
\end{array}\right)\right]
$$

But we need: $\quad P\left(x_{t+1} \mid z_{0: t+t}\right)=$?

Another Gaussian identity...

Suppose: $N\left[\begin{array}{lll}x & : & a \\ y & & b\end{array},\left(\begin{array}{cc}A & C \\ C^{T} & B\end{array}\right)\right]$
Calculate: $\quad P(y \mid x)=$?

$$
P(y \mid x)=N\left(y \mid b+C^{T} A^{-1}(x-a), B-C^{T} A^{-1} C\right)
$$

Observation update

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=N\left[\begin{array}{ccc}
x_{t+1} & : & \mu_{t}^{\prime} \\
z_{t+1} & & C \mu_{t}^{\prime}
\end{array},\left(\begin{array}{cc}
\Sigma & \Sigma C^{T} \\
C \Sigma & C \Sigma A^{T}+R
\end{array}\right)\right]
$$

But we need: $P\left(x_{t+1} \mid z_{0: t+1}\right)=$?

$$
P\left(x_{t+1} \mid z_{0: t+1}\right)=N\left(x_{t+1} ; \mu_{t+1}, \Sigma_{t+1}\right)
$$

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

To summarize the Kalman filter

System:

$$
\begin{aligned}
& P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}, Q\right) \\
& P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid C x_{t+1}, R\right)
\end{aligned}
$$

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\quad \mu_{t}^{\prime}=A \mu_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement update:

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

Suppose there is an action term...

System:

$$
\begin{aligned}
& P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}+u_{t}, Q\right) \\
& P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid C x_{t+1}, R\right)
\end{aligned}
$$

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\mu_{t}^{\prime}=A \mu_{t}+u_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement update:

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

To summarize the Kalman filter

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\quad \mu_{t}^{\prime}=A \mu_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement update: $\mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right)$

$$
4
$$

This factor is often called the "Kalman gain"

$$
\Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
$$

Things to note about the Kalman filter

Process update: $\mu_{t}^{\prime}=A \mu_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement update: $\mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right)$

$$
\Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
$$

- covariance update is independent of observation
- Kalman is only optimal for linear-Gaussian systems
- the distribution "stays" Gaussian through this update
- the error term can be thought of as the different between the observation and the prediction

Kalman in 1D

System:

$$
\begin{aligned}
& P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1}: x_{t}+u_{t}, q\right) \\
& P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid 2 x_{t+1}, r\right)
\end{aligned}
$$

Process update: $\bar{\mu}_{t}=\mu_{t}+u_{t}$

$$
\bar{\sigma}_{t}^{2}=\sigma_{t}^{2}+q
$$

Measurement update: $\mu_{t+1}=\bar{\mu}_{t}+\frac{2 \bar{\sigma}_{t}^{2}}{r+4 \bar{\sigma}_{t}^{2}}\left(z_{t+1}-\bar{\mu}_{t}\right)$

$$
\sigma_{t+1}=\bar{\sigma}_{t}^{2}-\frac{4\left(\bar{\sigma}_{t}^{2}\right)^{2}}{r+4 \bar{\sigma}_{t}^{2}}
$$

Kalman Idea

Example: estimate velocity

Example: filling a tank

$$
x=\binom{l}{f} \longleftarrow \longleftarrow \text { Level of tank }
$$

$$
l_{t+1}=l_{t}+f d t
$$

Process: $\quad x_{t+1}=\left(\begin{array}{cc}1 & d t \\ 0 & 1\end{array}\right) x_{t}+q$

Observation: $z_{t+1}=\left(\begin{array}{cc}1 & 0\end{array}\right) x_{t+1}+r$

Example: estimate velocity

$$
\begin{gathered}
x_{t+1}=A x_{t}+w_{t} \\
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
\dot{x}_{t+1} \\
\dot{y}_{t+1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & d t & 0 \\
0 & 1 & 0 & d t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{t} \\
y_{t} \\
\dot{x}_{t} \\
\dot{y}_{t}
\end{array}\right)+\mathrm{w}_{t} \\
z_{t+1}=C x_{t+1}+r_{t+1} \\
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
\dot{x}_{t+1} \\
\dot{y}_{t+1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{t+1} \\
y_{t+1} \\
\dot{x}_{t+1} \\
\dot{y}_{t+1}
\end{array}\right)+\mathrm{r}_{t+1}
\end{gathered}
$$

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

What should I do?

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

What should I do?

Well, there are some options...

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

What should I do?

Well, there are some options...
But none of them are great.

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

Well, there are some options...
But none of them are great.
Here's one: the Extended Kalman Filter

Extended Kalman filter

Take a Taylor expansion:

$$
\begin{aligned}
& x_{t+1}=f\left(x_{t}, u_{t}\right) \\
& \approx f\left(\mu_{t}, u_{t}\right)+A_{t}\left(x_{t}-\mu_{t}\right) \\
& \text { Where: } \quad A_{t}=\frac{\partial f}{\partial x}\left(\mu_{t}, u_{t}\right) \\
& z_{t+1}= h\left(x_{t}\right) \\
& \approx h\left(\mu_{t}\right)+C_{t}\left(x_{t}-\mu_{t}\right) \\
& \text { Where: } \quad C_{t}=\frac{\partial h}{\partial x}\left(\mu_{t}\right)
\end{aligned}
$$

Extended Kalman filter

Take a Taylor expansion:

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
\approx & \\
& \text { Where: } \quad A_{t}=\frac{\partial f}{\partial x}\left(\mu_{t}, u_{t}\right)+A_{t}\left(x_{t}-\mu_{t}\right) \\
z_{t+1}= & h\left(x_{t}\right) \\
\approx & h\left(\mu_{t}\right)+C_{t}\left(x_{t}-\mu_{t}\right) \\
& \text { Where: } \quad C_{t}=\frac{\partial h}{\partial x}\left(\mu_{t}\right)
\end{aligned}
$$

Then use the same equations...

To summarize the EKF

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\quad \mu_{t}^{\prime}=f\left(\mu_{t}, u_{t}\right)$

$$
\Sigma_{t}^{\prime}=A_{t} \Sigma_{t} A_{t}^{T}+Q
$$

Measurement update: $\mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-h\left(\mu_{t}^{\prime}\right)\right)$ $\Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}$

Extended Kalman filter

Extended Kalman filter

