
Kalman Filter

• Sequential Bayes Filtering is a general 
approach to state estimation that gets used 
all over the place.

• But, implementations like histogram filters or 
Kalman filters are computationally complex.

• Is it always this way? Is Bayes filtering ever 
simple?

I've got it!



Why Kalman filtering?

Kalman filters are particularly well 
suited for tracking moving objects

In general: state estimation
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Review of sequential Bayes filtering

Process update:

Measurement 
update:



Review of sequential Bayes filtering
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Transition function

Recall the state transition function:

– this probability can be expressed as a table:

Current stateNext state

Can also be expressed as a function:

or:



Linear system

A linear system is any system where:

(technically, this is a linear Gaussian system)

Also written:



Linear system: Example
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Linear system: Example
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How get it into this form?

Equation of motion:

Integrate forward one 
timestep:



Linear system

A linear system is any system where:

(technically, this is a linear Gaussian system)

Also written:

Also, assume that the observation function is linear Gaussian:



Kalman Idea
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Kalman Idea
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Gaussians

Univariate Gaussian:

Multivariate Gaussian:



Playing w/ Gaussians

Suppose:

Calculate:
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In fact

Suppose:

Then:



Illustration

Image: Thrun et al., CS233B course notes



And

Suppose:

Then:

Marginal distribution



Does this remind us of anything?



Does this remind us of anything?

Process update 
(discrete):

Process update 
(continuous):



Does this remind us of anything?
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priorTransition dynamics



Does this remind us of anything?

Process update 
(discrete):

Process update 
(continuous):

priorTransition dynamics



Observation update

Observation update:

Where:



Observation update

Observation update:

Where:



Observation update

Observation update:

Where:



Observation update

But we need:



Another Gaussian identity...

Suppose:

Calculate:



Observation update

But we need:



To summarize the Kalman filter

Prior:

Process update:

Measurement update:

System:



Suppose there is an action term...

Prior:

Process update:

Measurement update:

System:



To summarize the Kalman filter

Prior:

Process update:

Measurement update:

This factor is often called 
the “Kalman gain”



Things to note about the Kalman filter

Process update:

Measurement update:

– covariance update is independent of observation

– Kalman is only optimal for linear-Gaussian systems

– the distribution “stays” Gaussian through this update

– the error term can be thought of as the different between the 
observation and the prediction



Kalman in 1D
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Process update:

Measurement update:

System:



Kalman Idea
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ẋ

x

ẋ
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Example: estimate velocity

Image: Thrun et al., CS233B course notes
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Example: filling a tank

Level of tank

Fill rate

Process:

Observation:



Example: estimate velocity



But, my system is NON-LINEAR!

What should I do?
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But, my system is NON-LINEAR!

What should I do?

Well, there are some options...

But none of them are great.

Here's one: the Extended Kalman Filter



Extended Kalman filter

Take a Taylor expansion:

Where:

Where:



Extended Kalman filter

Take a Taylor expansion:

Where:

Where:

Then use the same equations...



To summarize the EKF

Prior:

Process update:

Measurement update:



Extended Kalman filter

Image: Thrun et al., CS233B course notes



Extended Kalman filter
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