Inverse Kinematics

This addresses the obvious question: what joint angles will place my end effector in a desired pose?

Inverse kinematics

Closed form (analytical) solution: a sequence or set of equations that can be solved for the desired joint angles

- Potentially faster than an iterative solution
- A unique solution to all manipulator positions can be determined a priori.
- Can guarantee "safe" joint configurations where the manipulator does not collide with the body.

Iterative (numerical) solution: numerical iteration toward a desired goal position (variation on Newton's method)

- Easier to think about
- Better suited to incremental displacements and control.

Inverse kinematics

There is no general analytical inverse kinematics solution

- All analytical inverse kinematics solutions are specific to a robot or class of robots.
- based on geometric intuition about the robot
- I'll give one example - there are many variations.

Inverse kinematics

Spherical wrist: the axes of the last three joints intersect in a point.

Consider this 6-joint robot:

- this example is out of the book...

Inverse kinematics

Problem:

- Given: desired transform, $\quad T_{e f f}=\left[\begin{array}{cc}R_{e f f} & d_{e f f} \\ 0 & 1\end{array}\right]$
- Find: $q=\left(\begin{array}{llllll}q_{1} & q_{2} & q_{3} & q_{4} & \cdots & q_{n}\end{array}\right)$

Note:

- The desired transform (pose) encodes six degrees of freedom (this info can be represented by six numbers)
- Since we only have six joints at our disposal, there is no manifold of redundant solutions.
- For this manipulator, the problem can be decomposed into a position component (the first three joints) and an orientation component (the last three joints)
- The first three joints tell you what the position of the spherical wrist

Example: Inverse kinematics

Solution:

- First, back out the position of the spherical wrist:

Since it's a spherical wrist, the last three joints can be thought of as rotating about a point.

- A constant transform exists that goes from the last wrist joint out to the end effector (sometimes this is called the "tool" transform):
- Back out the position of the wrist:

$$
{ }^{b} T_{s w}={ }^{b} T_{e f f}{ }^{s w} T_{e f f}{ }^{-1}
$$

Example: Inverse kinematics

- Next, solve for the first three joints

First, solve for $\quad q_{1}$ (look down from above)

$$
\begin{aligned}
& q_{1}=a \tan 2\left(x_{g}, y_{g}\right) \\
& \quad \text { or } \\
& q_{1}=a \tan 2\left(x_{g}, y_{g}\right)+\pi
\end{aligned}
$$

Goal position in horizontal plane

Example: Inverse kinematics

Next, solve for $q_{.3}$ (look at the manipulator orthogonal to the plane of the first two links)

$c^{2}=a^{2}+b^{2}-2 a b \cos \left(\theta_{c}\right)$

$$
\cos \left(\theta_{c}\right)=-\frac{r_{g}^{2}+\left(z_{g}-h\right)^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}}=-D
$$

where $\quad r_{g}{ }^{2}=x_{g}{ }^{2}+y_{g}{ }^{2}$
and h is the height of the first link

$$
\tan \left(q_{3}\right)=\frac{ \pm \sqrt{1-D^{2}}}{D}
$$

Example: Inverse kinematics

Next, solve for q_{2} (continue to look at the manipulator orthogonal to the plane of the first two links)

$$
\begin{aligned}
\tan (\theta) & =\frac{z_{g}-h}{\sqrt{x_{g}^{2}+y_{g}^{2}}} \\
\tan (\alpha) & =\frac{l_{2} s_{3}}{l_{1}+l_{2} c_{3}} \\
q_{2} & =\theta \pm \alpha
\end{aligned}
$$

Example: Inverse kinematics

Finally, the last three joints completely specify the orientation of the end effector.

- Note that the last three joints look just like ZYZ Euler angles
- Determination of the joint angles is easy just calculate the ZYZ Euler angles corresponding to the desired orientation.

Remember: ZYZ Euler Angles

$$
\left.\begin{array}{c}
R_{z y z}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
R_{z y z}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right) \\
\theta= \pm a \tan 2\left(\sqrt{1-r_{33}{ }^{2}}, r_{33}\right.
\end{array}\right) .
$$

Inverse kinematics for a humanoid arm

You can do similar types of things for a humanoid
(7-DOF) arm.

- Since this is a redundant arm, there are a manifold of solutions...

General strategy:

1. Solve for elbow angle
2. Solve for a set of shoulder angles that places the wrist in the right position (note that you have to choose an elbow orbit angle)
3. Solve for the wrist angles
