
my head is spinning...

Four different ways to represent rotation



The space of rotations

Special orthogonal group(3):

( ) { }1)det(,|3 33 +==∈= × RIRRRRSO T

Rotations preserve distance: 2121 ppRpRp −=−

Rotations preserve orientation: ( ) ( ) ( )2121 ppRRpRp ×=×

Why                                ? 1)det( ±=R



The space of rotations

Special orthogonal group(3):

( ) { }1)det(,|3 33 +==∈= × RIRRRRSO T

Why it’s a group:

• Closed under multiplication: if                              then 

• Has an identity:

• Has a unique inverse…

• Is associative…

( )321 SORR ∈( )3, 21 SORR ∈
( ) 11 s.t. 3 RIRSOI =∈∃

Why orthogonal:

• vectors in matrix are orthogonal

Why it’s special:                           , NOT1)det( +=R 1)det( ±=R

Right hand coordinate system



Possible rotation representations

You need at least three numbers to represent an 
arbitrary rotation in SO(3) (Euler theorem). Some 
three-number representations:

• ZYZ Euler angles 

• ZYX Euler angles (roll, pitch, yaw)

• Axis angle

One four-number representation:

• quaternions



To get from A to B:

1. Rotate    about z axis

2. Then rotate    about y axis

3. Then rotate    about z axis

ZYZ Euler Angles
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( ) )()()(,, ψθφψθφ zyzzyz RRRR =

Therefore, the sequence of rotations is concatentated as follows:

ZYZ Euler Angles
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Remember that                                     encode the desired rotation in the pre-
rotation reference frame:
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To get from A to B:

1. Rotate    about z axis

2. Then rotate    about y axis

3. Then rotate    about x axis

θ
ψ

( ) )()()(,, ψθφψθφ xyzzyx RRRR =

ZYX Euler Angles (roll, pitch, yaw)
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In Euler angles, the each rotation is imagined to be represented in the 
post-rotation coordinate frame of the last rotation

( ) )()()(,, ψθφψθφ xyzzyx RRRR =

ZYX Euler Angles (roll, pitch, yaw)

In Fixed angles, all rotations are imagined to be represented in the original 
(fixed) coordinate frame.

ZYX Euler angles can be thought of as:

1. ZYX Euler

2. XYZ Fixed



Problems w/ Euler Angles

If two axes are aligned, then there is a “don’t care” manifold of Euler angles 
that represent the same orientation

• The system loses one DOF
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Problem w/ Euler Angles: gimbal lock

1. When a small change in orientation is 
associated with a large change in rotation 
representation

2. Happens in “singular configurations” of the 
rotational representation (similar to 
singular configurations of a manipulator)

3. This is a problem w/ any Euler angle 
representation



Problem w/ Euler Angles: gimbal lock



Problem w/ Euler Angles: gimbal lock



Axis-angle representation

Theorem: (Euler). Any orientation,                   , is equivalent to a rotation 
about a fixed axis,               , through an angle 
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θAxis: Angle:

( ) ( ) ( ) ( ) ( )( )θθθ
θ cos1sin 2 −++== kkk
k SSIeR S

(also called exponential coordinates)

[ ]book... in theequation that =

Rodrigues’ formula

Converting to a rotation matrix:



Axis-angle representation
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Magnitude of rotation:
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Where:
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Axis of rotation:

and:

Converting to axis angle:



Axis-angle representation

Axis angle is can be encoded by just three numbers instead of four:

k

k
k 



=ˆ k=θIf                  then0≠k and

For most orientations,        , is unique.
kR

If the three-number version of axis angle is used, then

IR =0

For rotations of          , there are two equivalent representations:180

kk RR −=If                   then
180=k



Axis-angle problems

Still suffers from the “edge” and distance preserving problems of Euler 
angles:
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Distance metric changes as you 
get further from origin.



Projection distortions



Example: differencing rotations
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Calculate the difference between 

these two rotations:
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magnitude of the difference:
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Convert to rotation matrices to solve this problem:
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Example: differencing rotations
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So far, rotation matrices seem to be the most reliable method of manipulating 
rotations. But there are problems:

• Over a long series of computations, numerical errors can cause these 3x3 
matrices to no longer be orthogonal (you need to “orthogonalize” them from 
time to time).

• Although you can accurately calculate rotation differences, you can’t 
interpolate over a difference.’

• Suppose you wanted to smoothly rotate from one orientation to another – 
how would you do it?

Quaternions

Answer: quaternions…



Quaternions

3210 kqjqiqqQ +++=Generalization of complex numbers:

( )qqQ ,0=

( ) ( )qqqqQ −== ,, 0
*

0
*

Essentially a 4-dimensional quantity

( )( )32103210 kpjpippkqjqiqqQP ++++++=Multiplication:

( )qppqqpqpqpQP ×++⋅−= 0000 ,

Complex conjugate:

1−==== ijkkkjjii

kjiij =−=

ikjjk =−=

jikki =−=

Properties of complex 
dimensions:



Quaternions

Invented by Hamilton in 1843:

Along the royal canal  in Dublin…



Quaternions
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Let’s consider the set of unit 

quaternions:

This is a four-dimensional hypersphere, i.e. the 3-sphere 3S

Therefore, the inverse of a unit quaternion is: 1* −=QQ

( ) ( ) ( ) )0,1(,,, 00
2

0000
* =×+−−=−= qqqqqqqqqqqqqQQ

The identity quaternion is: ( )0,1=Q

Since:



You can rotate        from frame a to b:

Quaternions

Pa *
ba

a
ba

b PQQP =

Given a unit axis,     , and an angle,     : 

Associate a rotation with a unit quaternion as follows:

k̂ θ (just like axis angle)
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The associated quaternion is:

Therefore,       represents the same rotation asQ Q−

Let                       be the quaternion associated with the vector        ( )pP ii ,0= pi

bacbca QQQ =Composition:

1−= bacacb QQQInversion:



Rotate                           by  

Example: Quaternions
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Find the difference between these two axis angle 

rotations:















=

0

0

22
πk

Example: Quaternions
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Quaternions: Interpolation

Suppose you’re given two rotations,       and

How do you calculate intermediate rotations?
1R 2R

( ) 21 1 RRRi αα −+= This does not even result in a rotation 
matrix

Do quaternions help?

( )
( ) 21

21

1

1

QQ

QQ
Qi αα

αα
−+
−+=

Suprisingly, this actually works

• Finds a geodesic

This method normalizes automatically (SLERP):

( )
Ω

Ω+Ω−=
sin

sin1sin 21 αα QQ
Qi
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