Cartesian Control

- Analytical inverse kinematics can be difficult to derive
- Inverse kinematics are not as well suited for small differential motions
- Let's take a look at how you use the Jacobian to control Cartesian position

Cartesian control

Let's control the position (not orientation) of the three link arm end effector:

$$
J=\left(\begin{array}{ccc}
-s_{1}\left(l_{2} c_{2}+l_{3} c_{23}\right) & -c_{1}\left(l_{2} c_{2}+l_{3} c_{23}\right) & -l_{3} c_{1} s_{23} \\
c_{1}\left(l_{2} c_{2}+l_{3} c_{23}\right) & -s_{1}\left(l_{2} c_{2}+l_{3} c_{23}\right) & -l_{3} c_{1} s_{23} \\
0 & l_{2} c_{2}+l_{3} c_{23} & l_{3} c_{23}
\end{array}\right)
$$

We can use the same strategy that we used before:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=J\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=J^{-1}\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]
$$

Cartesian control

However, this only works if the Jacobian is square andfull rank...)

(- All rows/columns are linearly independent, or

- Columns span Cartesian space, or
- Determinant is not zero

Cartesian control

What if you want to control the twodimensional position of a three-link manipulator?

$$
\begin{gathered}
J(q)=\left[\begin{array}{ccc}
-l_{1} s_{1}-l_{2} s_{12}-l_{3} s_{123} & -l_{1} s_{1}-l_{2} s_{12} & -l_{1} s_{1} \\
l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} & l_{1} c_{1}+l_{2} c_{12} & l_{1} c_{1}
\end{array}\right] \\
{\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=J(q)\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right] \longleftarrow \begin{array}{c}
\text { Two equations of three } \\
\text { variables each... }
\end{array}}
\end{gathered}
$$

This is an under-constrained system of equations.

- multiple solutions
- there are multiple joint angle velocities that realize the same EFF velocity.

Generalized inverse

If the Jacobian is not a square matrix (or is not full rank), then the inverse doesn't exist...

- what next?

We have: $\quad \dot{x}=J \dot{q}$
We are looking for a matrix $J^{\#}$ such that:

$$
\dot{q}=J^{\#} \dot{x} \quad \longrightarrow \quad \dot{x}=J \dot{q}
$$

Generalized inverse

Two cases:

- Underconstrained manipulator (redundant)
- Overconstrained

Generalized inverse:

- for the underconstrained manipulator: given \dot{x}, find any vector \dot{q} s.t.
- for the overconstrained manipulator: given \dot{x}, find any vector \dot{q} $\dot{x}-36$ Is minimized

Jacobian Pseudoinverse: Redundant manipulator

Psuedoinverse definition: (underconstrained)
Given a desired twist, \dot{x}_{d}, find a vector of joint velocities, \dot{q}, that satisfies $\dot{x}_{d}=J \dot{q}$ while minimizing $f(\dot{q})=\dot{q}^{T} \dot{q}$

Minimize joint velocities

Minimize $f(z)$ subject to $g(z)=0$:
Use lagrange multiplier method: $\nabla_{z} f(z)=\lambda \nabla_{z} g(z)$

This condition must be met when $f(z)$ is at a minimum subject to $g(z)=0$

Jacobian Pseudoinverse: Redundant manipulator

$$
\begin{aligned}
& \nabla_{z} f(z)=\lambda \nabla_{z} g(z) \\
& f(\dot{q})=\frac{1}{2} \dot{q}^{T} \dot{q} \longleftarrow \text { Minimize } \\
& g(\dot{q})=J \dot{q}-\dot{x}=0 \longleftarrow \text { Subject to } \\
& \nabla_{\dot{q}} f(\dot{q})=\dot{q}^{T} \\
& \nabla_{\dot{q}} g(\dot{q})=J \\
& \dot{q}^{T}=\lambda^{T} J \\
& \dot{q}=J^{T} \lambda
\end{aligned}
$$

Jacobian Pseudoinverse: Redundant manipulator

$$
\begin{aligned}
& \dot{q}=J^{T} \lambda \\
& J \dot{q}=\left(J J^{T}\right) \lambda \\
& \lambda=\left(J J^{T}\right)^{-1} J \dot{q} \\
& \lambda=\left(J J^{T}\right)^{-1} \dot{x} \\
& \dot{q}=J^{T} \lambda \\
& \dot{q}=J^{T}\left(J J^{T}\right)^{-1} \dot{x} \\
& J^{\#}=J^{T}\left(J J^{T}\right)^{-1} \\
& \dot{q}=J^{\#} \dot{x}
\end{aligned}
$$

$$
\lambda=\left(J J^{T}\right)^{-1} J \dot{q} \longleftarrow \text { I won't say why, but if } J \text { is full rank, then }
$$ $J J^{T}$ is invertible

So, the pseudoinverse calculates the vector of joint velocities that satisfies $\dot{x}_{d}=J \dot{q}$ while minimizing the squared magnitude of joint velocity ($\dot{q}^{T} \dot{q}$).

- Therefore, the pseudoinverse calculates the least-squares solution.

Calculating the pseudoinverse

The pseudoinverse can be calculated using two different equations depending upon the number of rows and columns:
$J^{\#}=J^{T}\left(J J^{T}\right)^{-1} \quad \begin{aligned} & \text { Underconstrained case (if there are more } \\ & \text { columns than rows }(m<n))\end{aligned}$
$J^{\#}=\left(J^{T} J\right)^{-1} J^{T} \quad \begin{array}{r}\text { Overconstrained case (if there are more rows } \\ \text { than columns }(n<m))\end{array}$
$J^{\#}=J^{-1} \quad$ If there are an equal number of rows and columns ($n=m$)

These equations can only be used if the Jacobian is full rank; otherwise, use singular value decomposition (SVD):

Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

$$
J^{\#}=V \Sigma^{-1} U^{T}
$$

For an under-constrained matrix, Σ is a diagonal matrix of singular values:

$$
\begin{aligned}
& J=U\left[\begin{array}{ccccccc}
\sigma_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma_{n} & 0 & 0
\end{array}\right] V^{T} \\
& J^{\#}=V\left[\begin{array}{ccccc}
\frac{1}{\sigma_{1}} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sigma_{2}} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sigma_{3}} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sigma_{n}} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] U^{T}
\end{aligned}
$$

Properties of the pseudoinverse

Moore-Penrose conditions:

$$
\begin{aligned}
& \text { 1. } J^{\#} J J^{\#}=J^{\#} \\
& \text { 2. } J J^{\#} J=J \\
& \text { 3. }\left(J J^{\#}\right)^{T}=J J^{\#} \\
& \text { 4. }\left(J^{\#} J\right)^{T}=J^{\#} J
\end{aligned}
$$

Generalized inverse: satisfies condition 1
Reflexive generalized inverse: satisfies conditions 1 and 2
Pseudoinverse: satisfies all four conditions
Other useful properties of the pseudoinverse: $\quad\left(J^{\#)^{\#}}=J\right.$

$$
\left(J^{\#}\right)^{T}=\left(J^{T}\right)^{\#}
$$

Controlling Cartesian Position

Procedure for controlling position:

1. Calculate position error: $x_{e r r}$
2. Multiply by a scaling factor: $\delta x_{e r r}=\alpha x_{e r r}$
3. Multiply by the velocity Jacobian pseudoinverse: $\dot{q}=J_{v}{ }^{\#} \alpha x_{e r r}$

Controlling Cartesian Orientation

How does this strategy work for orientation control?

- Suppose you want to reach an orientation of R_{d}
- Your current orientation is R_{c}
- You've calculated a difference: $R_{c d}=R_{c}^{T} R_{d}$
- How do you turn this difference into a desired angular velocity to use in $\dot{q}=J^{\#} \omega$?

Controlling Cartesian Orientation

You can't do this:

- Convert the difference to ZYZ Euler angles: $r_{\phi \theta \psi}$
- Multiply the Euler angles by a scaling factor and pretend that they are an angular velocity: $\delta q=\alpha J^{\#} r_{\phi \theta \psi}$

Remember that in general: $J_{\omega} \neq \frac{\partial r_{\phi \theta \psi}}{\partial q}$

The Analytical Jacobian

If you really want to multiply the angular Jacobian by the derivative of an Euler angle, you have to convert to the "analytical" Jacobian:

$$
\frac{\partial r_{\phi \theta \psi}}{\partial q}=T_{A}\left(r_{\phi \theta \psi}\right) J_{\omega} \dot{q}
$$

$$
J_{A}=T_{A}\left(r_{\phi \theta \psi}\right) J_{\omega}=\left[\begin{array}{ccc}
0 & -s_{\phi} & c_{\phi} s_{\theta} \\
0 & c_{\phi} & s_{\phi} s_{\theta} \\
1 & 0 & c_{\theta}
\end{array}\right] \xrightarrow[\omega]{J_{\omega} \quad \begin{array}{c}
{ }^{0} z \\
\text { For } Z Y Z \text { Euler }
\end{array}}
$$

Gimbal lock: by using an analytical Jacobian instead of the angular velocity Jacobian, you introduce the gimbal lock problems we talked about earlier into the Jacobian - this essentially adds "singularities" (we'll talk more about that in a bit...)

Controlling Cartesian Orientation

The easiest way to handle this Cartesian orientation problem is to represent the error in axis-angle format

$$
\begin{aligned}
& \delta r_{k}=J_{\omega} \dot{q} \\
& \quad \begin{array}{c}
\text { Axis angle delta } \\
\text { rotation }
\end{array}
\end{aligned}
$$

Procedure for controlling rotation:

1. Represent the rotation error in axis angle format: $r_{\text {err }}$
2. Multiply by a scaling factor: $\delta r_{e r r}=\alpha r_{e r r}$
3. Multiply by the angular velocity Jacobian pseudoinverse: $\dot{q}=J_{\omega}{ }^{\#} \alpha r_{\text {err }}$

Controlling Cartesian Orientation

Why does axis angle work?

- Remember Rodrigues' formula from before:

Compare this to the definition of angular velocity: ${ }^{b} \dot{p}=S\left({ }^{b} \omega\right)^{b} p$
The solution to this FO diff eqn is: ${ }^{b} R_{\omega t}=e^{S\left({ }^{b} \omega\right) t}$

Therefore, the angular velocity gets integrated into an axis angle representation

Jacobian Transpose Control

The story of Cartesian control so far:

1. $\dot{x}=J \dot{q}$
2. $\dot{q}=J^{\#} \dot{x}$

Jacobian Transpose Control

Here's another approach:

$$
\begin{aligned}
& e=\frac{1}{2} x_{e r r}{ }^{T} x_{e r r} \\
& \frac{\partial e}{\partial q}=-\left(x_{e r r}{ }^{T}\right) \frac{\partial x}{\partial q} \\
& \dot{q} \leftarrow-\alpha\left(\frac{\partial e}{\partial q}\right)^{T} \\
& \dot{q}=\alpha\left[\left(x_{e r r}{ }^{T}\right) \frac{\partial x}{\partial q}\right]^{T} \\
& \dot{q}=\alpha \frac{\partial x^{T}}{\partial q}\left(x_{e r r}\right) \\
& \dot{q}=\alpha J_{v}{ }^{T}\left(x_{e r r}\right)
\end{aligned}
$$

Start with a squared position error function (assume the poses are represented as row vectors)

Position error: $\quad x_{e r r}=x_{r e f}-x$

Gradient descent: take steps proportional to α in the direction of the negative gradient.

Jacobian Transpose Control

The same approach can be used to control orientation:

$$
\dot{q}=\alpha J_{\omega}{ }^{T}\left({ }^{c u r r} k_{r e f}\right)
$$

orientation error: axis angle orientation of reference pose in the current end effector reference frame: ${ }^{\text {curr }} k_{\text {ref }}$

Jacobian Transpose Control

So, evidently, this is the gradient of that

$$
\begin{array}{cc}
\downarrow & \downarrow \\
\dot{q}=J^{T}\left(x_{e r r}\right) & e=\frac{1}{2} x_{e r r}{ }^{T} x_{e r r}
\end{array}
$$

- Jacobian transpose control descends a squared error function.
- Gradient descent always follows the steepest gradient

Jacobian Transpose v Pseudoinverse

What gives?

- Which is more direct? Jacobian pseudoinverse or transpose?

$$
\dot{q}=J^{T} \xi \quad \text { or } \quad \dot{q}=J^{\#} \xi
$$

They do different things:

- Transpose: move toward a reference pose as quickly as possible
- One dimensional goal (squared distance meteric)
- Pseudoinverse: move along a least squares reference twist trajectory
- Six dimensional goal (or whatever the dimension of the relevant twist is)

Jacobian Transpose v Pseudoinverse

The pseudoinverse moves the end effector in a straight line path toward the goal pose using the least squared joint velocities.

- The goal is specified in terms of the reference twist
- Manipulator follows a straight line path in Cartesian space

The transpose moves the end effector toward the goal position

- In general, not a straight line path in Cartesian space
- Instead, the transpose follows the gradient in joint space

Using the Jacobian for Statics

Up until now, we've used the Jacobian in the twist equation, $\quad \xi=J \dot{q}$

Interestingly, you can also use the Jacobian in a statics equation:

Using the Jacobian for Statics

It turns out that both wrenches and twists can be understood in terms of a representation of displacement known as a screw.

- Therefore, you can calculate work by integrating the dot product:

$$
\begin{aligned}
& W=\int(v \cdot f+\omega \cdot m)=\int\left[\begin{array}{c}
v \\
\omega
\end{array}\right]^{T}\left[\begin{array}{l}
f \\
m
\end{array}\right] \longleftarrow \quad \begin{array}{c}
\text { Work in Cartesian } \\
\text { space }
\end{array} \\
& W=\int \tau^{T} \dot{q} \longleftarrow \text { Work in joint space }
\end{aligned}
$$

Conservation of energy: $\int \tau^{T} \dot{q}=\int\left[\begin{array}{l}v \\ \omega\end{array}\right]^{T}\left[\begin{array}{l}f \\ m\end{array}\right]$

Using the Jacobian for Statics

$$
\begin{array}{ll}
\tau^{T} \dot{q}=\left[\begin{array}{l}
f \\
m
\end{array}\right]^{T}\left[\begin{array}{c}
v \\
\omega
\end{array}\right] & \longleftarrow \text { Incremental work (virtual } \\
\tau^{T} \dot{q}=\left[\begin{array}{l}
f \\
m
\end{array}\right]^{T} J \dot{q} & \text { Wrench-twist duality: } \\
\tau^{T}=\left[\begin{array}{l}
f \\
m
\end{array}\right]^{T} J & \tau=J^{T} w \quad \text { vs } \quad \xi=J \dot{q} \\
\tau=J^{T}\left[\begin{array}{l}
f \\
m
\end{array}\right] & \\
\tau=J^{T} w &
\end{array}
$$

Twist: converting between reference frames

Note that twist can be represented in different reference frames:

$$
{ }^{b} \xi=\left[\begin{array}{l}
{ }^{b} v \\
{ }^{b} \omega
\end{array}\right] \quad{ }^{k} \xi=\left[\begin{array}{l}
{ }^{k} v \\
{ }^{k} \omega
\end{array}\right]
$$

Consider two reference frames attached to the same rigid body:

$$
\begin{aligned}
& { }^{b} \omega_{2}={ }^{b} \omega_{1} \\
& { }^{b} v_{2}={ }^{b} v_{1}+{ }^{b} \omega_{1} \times r_{12}
\end{aligned}
$$

Twist: converting between reference frames

$$
\begin{aligned}
& { }^{b} \omega_{2}={ }^{b} \omega_{1} \\
& { }^{b} v_{2}={ }^{b} v_{1}+{ }^{b} \omega_{1} \times r_{12} \\
& {\left[\begin{array}{l}
{ }^{b} v_{2} \\
{ }_{2} \\
{ }^{2}
\end{array}\right]=\left[\begin{array}{cc}
I & -S\left(r_{12}\right) \\
0 & I
\end{array}\right]\left[\begin{array}{l}
{ }^{b} v_{1} \\
{ }^{b} \omega_{1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
2 \\
{ }^{2} \\
{ }^{2} \omega
\end{array}\right]=\left[\begin{array}{cc}
{ }^{b} R_{2}{ }^{T} & 0 \\
0 & { }^{b} R_{2}{ }^{T}
\end{array}\right]\left[\begin{array}{cc}
I & -S\left(r_{12}\right) \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
{ }^{b} R_{1} & 0 \\
0 & { }^{b} R_{1}
\end{array}\right]\left[\begin{array}{c}
{ }^{1} v \\
{ }^{1} \omega
\end{array}\right]} \\
& {\left[\begin{array}{c}
2 \\
2 \\
{ }^{2} \omega
\end{array}\right]=\left[\begin{array}{cc}
{ }^{2} R_{1} & -{ }^{2} R_{1} S\left({ }^{1} r_{12}\right) \\
0 & { }^{2} R_{1}
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]}
\end{aligned}
$$

Twist in frame 2
Twist in frame 1

Wrench: converting between reference frames

Wrench can also be represented in different reference frames:

$$
{ }^{b} w=\left[\begin{array}{c}
{ }^{b} f \\
{ }^{b} m
\end{array}\right] \quad{ }^{k} w=\left[\begin{array}{c}
{ }^{k} f \\
{ }^{k} m
\end{array}\right]
$$

Wrench: converting between reference frames

Use the virtual work argument to derive the relationship:
$\left[\begin{array}{l}{ }^{2} f_{2} \\ { }^{2} m_{2}\end{array}\right]^{T}\left[\begin{array}{l}{ }^{2} v_{2} \\ { }^{2} \omega_{2}\end{array}\right]=\left[\begin{array}{c}{ }^{1} f_{1} \\ { }^{1} m_{1}\end{array}\right]^{T}\left[\begin{array}{l}{ }^{1} v_{1} \\ { }^{1} \omega_{1}\end{array}\right]$
$\left[\begin{array}{c}{ }^{2} f_{2} \\ { }^{2} m_{2}\end{array}\right]^{T}\left[\begin{array}{cc}{ }^{2} R_{1} & -{ }^{2} R_{1} S\left({ }^{1} r_{12}\right) \\ 0 & { }^{2} R_{1}\end{array}\right]\left[\begin{array}{c}{ }^{1} v_{1} \\ { }^{1} \omega_{1}\end{array}\right]=\left[\begin{array}{c}{ }^{1} f_{1} \\ { }^{1} m_{1}\end{array}\right]^{T}\left[\begin{array}{l}{ }^{1} v_{1} \\ { }^{1} \omega_{1}\end{array}\right]$
$\left[\begin{array}{c}{ }^{2} f_{2} \\ { }^{2} m_{2}\end{array}\right]^{T}\left[\begin{array}{cc}{ }^{2} R_{1} & -{ }^{2} R_{1} S\left({ }^{1} r_{12}\right) \\ 0 & { }^{2} R_{1}\end{array}\right]=\left[\begin{array}{c}{ }^{1} f_{1} \\ { }^{1} m_{1}\end{array}\right]^{T}$
$\left[\begin{array}{c}{ }^{1} f_{1} \\ { }^{1} m_{1}\end{array}\right]=\left[\begin{array}{cc}{ }^{1} R_{2} & 0 \\ S\left({ }^{1} r_{12}\right)^{1} R_{2} & { }^{1} R_{2}\end{array}\right]\left[\begin{array}{c}{ }^{2} f_{2} \\ { }^{2} m_{2}\end{array}\right]$

Converting wrenches: Example

Use a 6-axis load cell bisecting the second link to calculate wrenches at the end effector (the tip of the last link)
${ }^{\text {eff }} R_{\text {sensor }}=\left(\begin{array}{ccc}c_{3} & s_{3} & 0 \\ -s_{3} & c_{3} & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
e_{\text {eff }} r_{\text {sensor }}=\left(\begin{array}{c}
-l_{3}-\frac{l_{2}}{2} c_{3} \\
\frac{l_{2}}{2} s_{3} \\
0
\end{array}\right)
$$

Converting wrenches: Example

