Cartesian Control

* Analytical inverse kinematics can be difficult
to derive

Inverse kinematics are not as well suited for
small differential motions

L

Let’s take a look at how you use the
Jacobian to control Cartesian position

Cartesian control

Let’s control the position (not orientation) of
the three link arm end effector:

E_ S1(Izcz + 13023) - Cl(lzcz + 13623) ~1,¢,8,3
J=0 Cl(lzcz +Z3023)

B 0

-5 (chz +1c,,) —L¢s,s

(I I Y

lc, + ¢, [icys

We can use the same strategy that we used
before:

g L O 40,00
nrE/c0 — 0o =/ oo
70 0.0 9.0 OO0

[A\l

Cartesian control

B) X,
K\ 2 Y3
b.‘ e al y
- [/
Ad'l joint ctlr ‘ yAl Z%, //
y I zZ, L7 s
q - X, s > x,
joint position P
sensor ‘ Zl‘(l,
z
9
Xo 4=~ TRL
@1 |:|_ J—l B:D yo‘(
=Y 4
(9> [] LY
However, this only warks if the Jacobian is
~
square and{ull rank...",
- (e

All rows/columns are
\ linearly independent, or
< ¢ Columns span
Cartesian space, or

_* Determinant is not zero

Cartesian control

What if you want to control the two-

dimensional position of a three-link 3. a-"

manipulator?

2

— — J— — — x'\
_EI—IISI s, =185, lis,—1L,s,, ls, 0

Ja) =1 i
Dllcl +1,¢, +105, lic, +1,c, lic, []
. g, O
LX L] 1 O T i
—J «——— TWo equations of three
HEN (q) 2[] variables each. ..

HH BB

This is an under-constrained system of equations.
* multiple solutions

* there are multiple joint angle velocities that realize the
same EFF velocity.

q;

Generalized inverse

If the Jacobian is not a square matrix (or is
not full rank), then the inverse doesn’t 3. a-
exist...

* what next? X

We have: x = Jq'

We are looking for a matrix ./ such that:

g=J'x — x=Jg

Generalized inverse

Two cases:
* Underconstrained manipulator (redundant)

* QOverconstrained

Generalized inverse:

» for the underconstrained manipulator: given x , find any vector g
s.t.

- for the overconstrained manipulator: given x, find any vector g
x— & Is minimized

Jacobian Pseudoinverse: Redundant manipulator

Psuedoinverse definition: (underconstrained)

Given a desired twist, x,, find a vector of
joint velocities, ¢ , that satisfies x, = Jg

while minimizing £ (§) = ¢" ¢

/

Minimize joint velocities

Minimize f(z)subjectto g(z) =0 :

Use lagrange multiplier method: [1_f(z) = Al _g(z)

/

This condition must be met when f(2) is at a minimum
subjectto g(z) =0

Jacobian Pseudoinverse: Redundant manipulator
0. /() =A0.g(2)
f(q)Z%qTq <« Minimize
g(q)=Jg—x=0 <+ Subjectto
0, /(@ =q"
Dqg(Q) =J
q’T :ATJ
g=J")

Jacobian Pseudoinverse: Redundant manipulator

G=J7A
Jq =(JJ" |2

_1 .
A= (JJT) Jqg <+— | won't say why, but if s is full rank, then

_ JJ' is invertible
A=) s
g=J'A

R B E So, the pseudoinverse calculates the
q=J (JJ) A vector of joint velocities that

P R B satisfies x, =Jg while
Jo=J (JJ) minimizing the squared magnitude
g=J'x of joint velocity (¢'¢g).

Therefore, the pseudoinverse
calculates the least-squares
solution.

Calculating the pseudoinverse

The pseudoinverse can be calculated using two different
equations depending upon the number of rows and columns:

(# 7| 777 |7} . .
J'=J (JJ) Underconstrained case (if there are more

columns than rows (m<n))

J" = (JTJ)_lJT Overconstrained case (if there are more rows
than columns (n<m))
Jr=J" If there are an equal number of rows and columns (n=m)

-

These equations can only be used if the Jacobian is full rank;
otherwise, use singular value decomposition (SVD):

Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

For an under-constrained matrix, 2 isa

— T
J—HEK diagonal matrix of singular values:
/ T \ @, 0 0 0 0 0 o0
mXm mXn nxXn %0 o 0 0 0 O O%
J=UO 0 o 0 0 0 o
SO 0O O 0 O O%
H 0 0 0 o 0 O0F
GUIT O 0 0 00
D L 0 0 of
J'=vz U’)
— (D O o 0O o4
J#:VEp 0 0 - ogﬂ
b o o o LU
] "]
@ 0 0 0 0f
B 0 0 0 0f

Properties of the pseudoinverse

Moore-Penrose conditions:

1. J° T =J"
2. JI'T =J

3. () =t
4. (7)) =

Generalized inverse: satisfies condition 1
Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

Other useful properties of the pseudoinverse: (J#)# =]

Controlling Cartesian Position

g
-~ S
o T \I oy q |
d joint ctlr
%—>@_':| 7' _'l | ‘
\ '] g
S gy N

Procedure for controlling position:
1. Calculate position error: x, .
2. Multiply by a scaling factor: Qr, =ax,

3. Multiply by the velocity Jacobian pseudoinverse: g = Jv#axm

Controlling Cartesian Orientation

How does this strategy work for orientation control?
 Suppose you want to reach an orientation of R,
* Your current orientation is R,

* You've calculated a difference: R , = RCTRd

* How do you turn this difference into a desired
angular velocity touse in g = J w2

q

Rd @ W J# ab.l ifld \ joint ctlr

‘Rc FK(b_b - b'l joint position

sensor

Controlling Cartesian Orientation

You can’t do this:
* Convert the difference to ZYZ Euler angles: 7y,

* Multiply the Euler angles by a scaling factor and

.] _ #
pretend that they are an angular velocity: &g =aJ Voo
0% oy
Remember that in general: J, #
0g
s

Rd @ rw‘/’ J# ab.l ifld \ joint ctlr

‘Rc FK(b_b - b'l joint position

sensor

The Analytical Jacobian

If you really want to multiply the angular
Jacobian by the derivative of an Euler
angle, you have to convert to the
“analytical” Jacobian:

or .
a(pqew :TA(r(ﬂGw)qu
0 -5, c¢,5,0
J :T(r)J 2%) c¢ S a
A A\ oy |V w @ AL Ei]w __ For ZYZ Euler

H 0 ¢, g™ angles

Gimbal lock: by using an analytical Jacobian instead of the angular
velocity Jacobian, you introduce the gimbal lock problems we
talked about earlier into the Jacobian — this essentially adds
“singularities” (we’ll talk more about that in a bit...)

Controlling Cartesian Orientation

The easiest way to handle this Cartesian 3. a-T
orientation problem is to represent the
error in axis-angle format , 4

&k :qu.
N

Axis angle delta
rotation

Procedure for controlling rotation:
1. Represent the rotation error in axis angle format: 7,
2. Multiply by a scaling factor: o, =ar,

3. Multiply by the angular velocity Jacobian
pseudoinverse: g =J “ar

err

Controlling Cartesian Orientation

Why does axis angle work?

* Remember Rodrigues’ formula from before:

R,=¢e :]+S(k) sin(@) + S(k)*(1-cos(6))

axis angle

Compare this to the definition of angular velocity: bj) = S(”a))bp

The solution to this FO diff eqn is: "R =e

Therefore, the angular velocity gets integrated into an
axis angle representation

Jacobian Transpose Control

The story of Cartesian control so far:
1. x=Jg
2. q=J"x

Jacobian Transpose Control

Here’s another approach: Start with a squared position error
function (assume the poses are
—1, T represented as row vectors
e _ Exelf'l/' xerr p)
% — —(x T @ Position error: x,,. =X, =X
aq err aq
. [De
q « —Q5— Gradient descent: take steps
| Pq proportional to @ in the
_ -\ Ox ﬁ dlregtlon of the negative
q=anx.,, |=—I] gradient.
0q [
. ox’
q - a_ (’xerr)
0g

Jacobian Transpose Control

The same approach can be used to control orientation:

i=a JwT(curr kref)

orientation error: axis angle orientation of reference pose in
the current end effector reference frame: C”’”’”kref

Jacobian Transpose Control

So, evidently, this is the gradient of that
T

. — T —_ l
q - J (xerr) e — 2 xerr xerr
* Jacobian transpose control descends a squared

error function.

* Gradient descent always follows the steepest
gradient

Jacobian Transpose v Pseudoinverse

What gives?

* Which is more direct? Jacobian pseudoinverse or
transpose?

g=J"'é& or g=J"¢

They do different things:

* Transpose: move toward a reference pose as quickly as
possible

* One dimensional goal (squared distance meteric)

* Pseudoinverse: move along a least squares reference twist
trajectory

* Six dimensional goal (or whatever the dimension of the
relevant twist is)

Jacobian Transpose v Pseudoinverse

The pseudoinverse moves the end effector in ,’
a straight line path toward the goal pose /I
using the least squared joint velocities. /

/

* The goal is specified in terms of the e

reference twist X,

* Manipulator follows a straight line path in
Cartesian space

The transpose moves the end effector toward /
the goal position)
/
* In general, not a straight line path in !
Cartesian space 4

* Instead, the transpose follows the gradient
in joint space

Using the Jacobian for Statics

Up until now, we’ve used the Jacobian in the twist equation, é = Jq

Interestingly, you can also use the Jacobian in a statics
equation:

T=J"w

e

Joint torques Cartesian force
wrench: W=
moment (torque)

Using the Jacobian for Statics

It turns out that both wrenches and twists can be understood
in terms of a representation of displacement known as a
screw.

* Therefore, you can calculate work by integrating the dot
product:

_ _ e ﬁ by O <« Work in Cartesian
W—J'(vgf+a)@n)—‘l' E%n% space

W:J'TTq' <«— Work in joint space

50

. [y O
Conservation of energy: TTq — (10 [
I I%‘)D LgH

Using the Jacobian for Statics

<+«——— |ncremental work (virtual work)

.\,
NQ
[
<
O
S

ﬂ

.\,
[
<
mmimy
<

Wrench-twist duality:

~
[
<
~N
<
mmlm

r=J"w vs ¢&=Jq

r\l
1
<

~
S

Twist: converting between reference frames

Note that twist can be represented in different
reference frames:

5 _EFVD _D"vD
el fTHat

Consider two reference frames attached
to the same rigid body:

w="u

b _b. b
v,= vt Xn,

Twist: converting between reference frames

bCUZ:qu

b _b. b
v,= v+t X,

Py E— T -S(n,)0y O =
%@D%ﬁ 1%%QD

Py O E‘rR o 07 -S(n,)R
%C‘)D 10 szT%) 1 %O

[Fy O BR —2R1S(11f12)[ﬂ]lvD
%CUD 00 2Rl w%

\

TW|st in frame 2 Twist in frame 1

Wrench: converting between reference frames

Wrench can also be represented in different reference
frames:

~
—

%@Q
OOO
S
[
%BGL
OOO

Wrench: converting between reference frames

Use the virtual work argument to derive
the relationship:

Fr Oy, 0 Of 00y 0O
fzmgvzﬁuﬂmuvlm
Om,0gw0 OmO0w0

E[Zfz ggRl _2R12S(1r12)ﬁl"1 E_ Ellfl ggvl %
Om,0 o R [MwWwO OmOO0wWO

F 1, %TE?Rl —%S(%JSZ gfl %T
CJm, 00 ‘R, O OmQO

070 O 'R, 0 [OFf O
Fpie 3 U
L1] %(l’ﬂz)le le [T1M,[]

Converting wrenches: Example

Use a 6-axis load cell bisecting the X
second link to calculate wrenches at R eff

the end effector (the tip of the last link) Yoy

6 axis load cell

e, s, 00

eﬁRsensor = EI—S 3 C3 O EI

10 0 1

|| || Zz
- 2 fysensor

H—@ —1—263 H
0 2 0
v, =0 by O
sensor D 2 3 D
0 []

Converting wrenches: Example

y eff
' X
ff eff ensor Vot
F f ﬁ Rsensor 0 %S fsensor S 6 axis load cell
if B (eff)eﬁ eff ensor
meff E F eff ,sensor Rsensor Rsensor @] msensor []
< 4'xsens0r
ysensor
Oe, s, 0 0 0 00
s, ¢ o 0 0 oF
D 0 1 0 0 od
EF/‘/‘ f ﬁ” 12 @yensor ﬂ o

[
ensor |:|
[

sensor

LIC
3 5
&
ek
OO0
() (@)
()
+ o
(\O] |t\3\‘ wfa
uﬁ
|
u% wq
() (@)
(0 DEDLE
3

OO0
]
w
I
u.)N
D
w
I
I\)N
o
w
(V]
I
[~
"
w
[\]
S
=
o
U

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

