Cartesian Control

* Analytical inverse kinematics can be difficult
to derive

Inverse kinematics are not as well suited for
small differential motions

L

Let’s take a look at how you use the
Jacobian to control Cartesian position




Cartesian control

Let’s control the position (not orientation) of
the three link arm end effector:
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We can use the same strategy that we used
before:

g L O 40,00
nrE/c0 — 0o =/ oo
70 0.0 9.0 OO0

[A\l



Cartesian control
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Cartesian control

What if you want to control the two-

dimensional position of a three-link 3. a-"

manipulator?
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This is an under-constrained system of equations.
* multiple solutions

* there are multiple joint angle velocities that realize the
same EFF velocity.
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Generalized inverse

If the Jacobian is not a square matrix (or is
not full rank), then the inverse doesn’t 3. a-
exist...

* what next? X

We have: x = Jq'

We are looking for a matrix ./ such that:

g=J'x — x=Jg



Generalized inverse

Two cases:
* Underconstrained manipulator (redundant)

* QOverconstrained

Generalized inverse:

» for the underconstrained manipulator: given x , find any vector g
s.t.

- for the overconstrained manipulator: given x, find any vector g
x— & Is minimized



Jacobian Pseudoinverse: Redundant manipulator

Psuedoinverse definition: (underconstrained)

Given a desired twist, x,, find a vector of
joint velocities, ¢ , that satisfies x, = Jg

while minimizing £ (§) = ¢" ¢

/

Minimize joint velocities

Minimize f(z)subjectto g(z) =0 :

Use lagrange multiplier method: [1_f(z) = Al _g(z)

/

This condition must be met when f(2) is at a minimum
subjectto g(z) =0



Jacobian Pseudoinverse: Redundant manipulator
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Jacobian Pseudoinverse: Redundant manipulator

G=J7A
Jq =(JJ" |2

_1 .
A= (JJT) Jqg <+— | won't say why, but if s is full rank, then

_ JJ' is invertible
A=) s
g=J'A

R B E So, the pseudoinverse calculates the
q=J (JJ ) A vector of joint velocities that

P R B satisfies x, =Jg while
Jo=J (JJ ) minimizing the squared magnitude
g=J'x of joint velocity ( ¢'¢g ).

Therefore, the pseudoinverse
calculates the least-squares
solution.



Calculating the pseudoinverse

The pseudoinverse can be calculated using two different
equations depending upon the number of rows and columns:

( # 7| 777 |7} . .
J'=J (JJ ) Underconstrained case (if there are more

columns than rows (m<n))

J" = (JTJ)_lJT Overconstrained case (if there are more rows
than columns (n<m))
Jr=J" If there are an equal number of rows and columns (n=m)

-

These equations can only be used if the Jacobian is full rank;
otherwise, use singular value decomposition (SVD):



Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

For an under-constrained matrix, 2 isa
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Properties of the pseudoinverse

Moore-Penrose conditions:

1. J° T =J"
2. JI'T =J

3. () =t
4. (7)) =

Generalized inverse: satisfies condition 1
Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

Other useful properties of the pseudoinverse: (J#)# =]



Controlling Cartesian Position
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Procedure for controlling position:
1. Calculate position error: x, .
2. Multiply by a scaling factor: Qr, =ax,

3. Multiply by the velocity Jacobian pseudoinverse: g = Jv#axm



Controlling Cartesian Orientation

How does this strategy work for orientation control?
 Suppose you want to reach an orientation of R,
* Your current orientation is R,

* You've calculated a difference: R , = RCTRd

* How do you turn this difference into a desired
angular velocity touse in g = J w2

q
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Controlling Cartesian Orientation

You can’t do this:
* Convert the difference to ZYZ Euler angles: 7y,

* Multiply the Euler angles by a scaling factor and

. ] _ #
pretend that they are an angular velocity: &g =aJ Voo
0% oy
Remember that in general: J, #
0g
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The Analytical Jacobian

If you really want to multiply the angular
Jacobian by the derivative of an Euler
angle, you have to convert to the
“analytical” Jacobian:
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Gimbal lock: by using an analytical Jacobian instead of the angular
velocity Jacobian, you introduce the gimbal lock problems we
talked about earlier into the Jacobian — this essentially adds
“singularities” (we’ll talk more about that in a bit...)



Controlling Cartesian Orientation

The easiest way to handle this Cartesian 3. a-T
orientation problem is to represent the
error in axis-angle format , 4

&k :qu.
N

Axis angle delta
rotation

Procedure for controlling rotation:
1. Represent the rotation error in axis angle format: 7,
2. Multiply by a scaling factor: o, =ar,

3. Multiply by the angular velocity Jacobian
pseudoinverse: g =J “ar

err



Controlling Cartesian Orientation

Why does axis angle work?

* Remember Rodrigues’ formula from before:

R,=¢e :]+S(k) sin(@) + S(k)*(1-cos(6))

axis angle

Compare this to the definition of angular velocity: bj) = S( ”a))bp

The solution to this FO diff eqn is: "R =e

Therefore, the angular velocity gets integrated into an
axis angle representation



Jacobian Transpose Control

The story of Cartesian control so far:
1. x=Jg
2. q=J"x



Jacobian Transpose Control

Here’s another approach: Start with a squared position error
function (assume the poses are
—1, T represented as row vectors
e _ Exelf'l/' xerr p )
% — —(x T @ Position error:  x,,. =X, =X
aq err aq
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Jacobian Transpose Control

The same approach can be used to control orientation:

i=a JwT(curr kref)

orientation error: axis angle orientation of reference pose in
the current end effector reference frame: C”’”’”kref



Jacobian Transpose Control

So, evidently, this is the gradient of that
T

. — T —_ l
q - J (xerr) e — 2 xerr xerr
* Jacobian transpose control descends a squared

error function.

* Gradient descent always follows the steepest
gradient



Jacobian Transpose v Pseudoinverse

What gives?

*  Which is more direct? Jacobian pseudoinverse or
transpose?

g=J"'é& or g=J"¢

They do different things:

* Transpose: move toward a reference pose as quickly as
possible

* One dimensional goal (squared distance meteric)

* Pseudoinverse: move along a least squares reference twist
trajectory

* Six dimensional goal (or whatever the dimension of the
relevant twist is)



Jacobian Transpose v Pseudoinverse

The pseudoinverse moves the end effector in ,’
a straight line path toward the goal pose /I
using the least squared joint velocities. /

/

* The goal is specified in terms of the e

reference twist X,

* Manipulator follows a straight line path in
Cartesian space

The transpose moves the end effector toward /
the goal position )
/
* In general, not a straight line path in !
Cartesian space 4

* Instead, the transpose follows the gradient
in joint space



Using the Jacobian for Statics

Up until now, we’ve used the Jacobian in the twist equation, é = Jq

Interestingly, you can also use the Jacobian in a statics
equation:

T=J"w

e

Joint torques Cartesian force
wrench: W=
moment (torque)



Using the Jacobian for Statics

It turns out that both wrenches and twists can be understood
in terms of a representation of displacement known as a
screw.

* Therefore, you can calculate work by integrating the dot
product:

_ _ e ﬁ by O <« Work in Cartesian
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Using the Jacobian for Statics

<+«——— |ncremental work (virtual work)
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Twist: converting between reference frames

Note that twist can be represented in different
reference frames:
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Consider two reference frames attached
to the same rigid body:
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Twist: converting between reference frames
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Wrench: converting between reference frames

Wrench can also be represented in different reference
frames:
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Wrench: converting between reference frames

Use the virtual work argument to derive
the relationship:
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Converting wrenches: Example

Use a 6-axis load cell bisecting the X
second link to calculate wrenches at R eff

the end effector (the tip of the last link) Yoy

6 axis load cell
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Converting wrenches: Example
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