Solving discrete time AQR problems by substituting into a standard LQR parameterization

Robert Platt
Computer Science and Engineering SUNY at Buffalo

February 5, 2012

1 Problem

We are often interested in solving linear quadratic regulation (LQR) control problems for systems with affine dynamics (instead of linear) such as

$$
x_{t+1}=A x_{t}+B u_{t}+c,
$$

and quadratic cost functions with additive linear and constant terms such as

$$
J\left(u_{1: T-1}\right)=x_{T}^{T} Q_{f} x^{T}+2 x^{T} q_{f}+\sum_{t=1}^{T-1} x_{t}^{T} Q x_{t}+2 x_{t}^{T} q+u_{t}^{T} R u_{t}+2 u_{t}^{T} r
$$

We refer to this as the affine quadratic regulation (AQR) problem. It turns out that it is possible to identify a set of equations for this system similar to the standard Riccati equation using a variation of the standard LQR derivation. However, since this the derivation and the resulting equations are confusing, this paper outlines a method for solving the AQR problem using standard LQR Riccati equations. This formulation is based on and is nearly the same as that in Pieter Abbeel's course notes for Robotics 2 at Stanford University.

2 Solution

The standard LQR formulation finds an optimal solution to the linear system,

$$
x_{t+1}=A x_{t}+B u_{t},
$$

with a quadratic cost function,

$$
J\left(u_{1: T-1}\right)=x_{T}^{T} Q_{f} x^{T}+\sum_{t=1}^{T-1} x_{t}^{T} Q x_{t}+u_{t}^{T} R u_{t} .
$$

The key insight is that given an $A Q R$ problem, we can define the following matrices:

$$
\begin{gathered}
\bar{A}=\left(\begin{array}{cc}
A & c-B R^{-1} r \\
0 & 1
\end{array}\right), \quad \bar{B}=\binom{B}{0}, \\
\bar{Q}_{f}=\left(\begin{array}{cc}
Q_{f} & q_{f} \\
q_{f}^{T} & \eta
\end{array}\right), \quad \bar{Q}=\left(\begin{array}{cc}
Q & q \\
q^{T} & \eta
\end{array}\right),
\end{gathered}
$$

where η is an arbitrary constant, and vectors:

$$
\bar{x}_{t}=\binom{x_{t}}{1}, \quad \bar{u}_{t}=u_{t}+R^{-1} r .
$$

After working the math, one can see that:

$$
\binom{A x_{t}+B u_{t}+c}{1}=\bar{A} \bar{x}_{t}+\bar{B} \bar{u}_{t}
$$

and
$x_{T}^{T} Q_{f} x^{T}+2 x^{T} q_{f}+\sum_{t=1}^{T-1} x_{t}^{T} Q x_{t}+2 x_{t}^{T} q+u_{t}^{T} R u_{t}+2 u_{t}^{T} r+\eta^{\prime}=\bar{x}_{T}^{T} \bar{Q}_{f} \bar{x}^{T}+\sum_{t=1}^{T-1} \bar{x}_{t}^{T} \bar{Q} \bar{x}_{t}+\bar{u}_{t}^{T} \bar{R} \bar{u}_{t}$,
where η^{\prime} is an arbitrary constant. Therefore, if we construct $\bar{A}, \bar{B}, \bar{Q}$, etc. and solve using the standard DLQR equations, we will get a solution to the $A Q R$ problem.

