
A* and Weighted A* Search

Maxim Likhachev

Carnegie Mellon University

Maxim Likhachev 2

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal)

path

The two steps above are often interleaved

Planning as Graph Search Problem

Carnegie Mellon University

Maxim Likhachev 3

1. Construct a graph representing the planning problem

(future lectures)

2. Search the graph for a (hopefully, close-to-optimal)

path (three next lectures)

The two steps above are often interleaved

Planning as Graph Search Problem

Carnegie Mellon University

Maxim Likhachev 4

• Cell decomposition

- X-connected grids

- lattice-based graphs

• Skeletonization of the environment/C-Space

-Visibility graphs

- Voronoi diagrams

- Probabilistic roadmaps

Examples of Graph Construction

replicate action

template online

Carnegie Mellon University

Maxim Likhachev 5

• Cell decomposition

- X-connected grids

- lattice-based graphs

• Skeletonization of the environment/C-Space

-Visibility graphs

- Voronoi diagrams

- Probabilistic roadmaps

Examples of Graph Construction

replicate action

template online

Carnegie Mellon University

Will all be covered later

Maxim Likhachev 6

Examples of Search-based Planning

Carnegie Mellon University

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps are often interleaved

motion planning for autonomous vehicles in 4D (<x,y,orientation,velocity>)
running Anytime Incremental A* (Anytime D*) on multi-resolution lattice

[Likhachev & Ferguson, IJRR’09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Maxim Likhachev 7

Examples of Search-based Planning

Carnegie Mellon University

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps are often interleaved

8-dim foothold planning for quadrupeds using R* graph search

Maxim Likhachev 8

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Searching Graphs for a Least-cost Path

• Once a graph is constructed (from skeletonization or uniform cell

decomposition or adaptive cell decomposition or lattice or whatever else), we

need to search it for a least-cost path

Carnegie Mellon University

Maxim Likhachev 9

• Many searches work by computing optimal g-values for
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy: g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs for a Least-cost Path

Carnegie Mellon University

Maxim Likhachev 10

• Many searches work by computing optimal g-values for
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy: g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs for a Least-cost Path

why?

Carnegie Mellon University

Maxim Likhachev 11

• Least-cost path is a greedy path computed by backtracking:

– start with sgoal and from any state s move to the predecessor state
s’ such that

)),''()''((minarg')('' sscsgs spreds  

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University

Maxim Likhachev 12

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

at any point of time:

A* Search

Carnegie Mellon University

Maxim Likhachev 13

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University

Maxim Likhachev 14

• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality):

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility follows from consistency and often consistency

follows from admissibility

A* Search
minimal cost from s to sgoal

Carnegie Mellon University

Maxim Likhachev 15

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

set of candidates for expansion

for every expanded state

g(s) is optimal
(if heuristics are consistent)

A* Search

Carnegie Mellon University

Maxim Likhachev 16

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

Maxim Likhachev 17

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

set of states that have already been expanded

tries to decrease g(s’) using the

found path from sstart to s

A* Search

Carnegie Mellon University

Maxim Likhachev 18

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

Maxim Likhachev 19

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

Maxim Likhachev 20

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

A* Search

Carnegie Mellon University

Maxim Likhachev 21

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

Maxim Likhachev 22

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s1

A* Search

Carnegie Mellon University

Maxim Likhachev 23

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}

next state to expand: s4

A* Search

Carnegie Mellon University

Maxim Likhachev 24

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* Search

Carnegie Mellon University

Maxim Likhachev 25

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}

done

A* Search

Carnegie Mellon University

Maxim Likhachev 26

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University

Maxim Likhachev 27

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University

Maxim Likhachev 28

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path
why?

A* Search

Carnegie Mellon University

Maxim Likhachev 29

• Is guaranteed to return an optimal path (in fact, for every

expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions

required to guarantee optimality – optimal in terms of the

computations

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

Maxim Likhachev 30

• Is guaranteed to return an optimal path (in fact, for every

expanded state) – optimal in terms of the solution

Sketch of proof by induction for h = 0:

assume all previously expanded states have optimal g-values

next state to expand is s: f(s) = g(s) – min among states in OPEN

OPEN separates expanded states from never seen states

thus, path to s via a state in OPEN or an unseen state will be

worse than g(s) (assuming positive costs)

A* Search

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3
CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

Carnegie Mellon University

Maxim Likhachev 31

• A* Search: expands states in the order of f = g+h values

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Effect of the Heuristic Function

expansion of s

Carnegie Mellon University

Maxim Likhachev 32

• A* Search: expands states in the order of f = g+h values

Sketch of proof of optimality by induction for consistent h:

1. assume all previously expanded states have optimal g-values

2. next state to expand is s: f(s) = g(s)+h(s) – min among states in

OPEN

3. assume g(s) is suboptimal

4. then there must be at least one state s’ on an optimal path from

start to s such that it is in OPEN but wasn’t expanded

5. g(s’) + h(s’) ≥ g(s)+h(s)

6. but g(s’) + c*(s’,s) < g(s) =>

g(s’) + c*(s’,s) + h(s) < g(s) + h(s) =>

g(s’) + h(s’) < g(s) + h(s)

7. thus it must be the case that g(s) is optimal

Effect of the Heuristic Function

Carnegie Mellon University

Maxim Likhachev 33

• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty

much)

• Intuitively: f(s) – estimate of the cost of a least cost path

from start to goal via s

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

Carnegie Mellon University

Maxim Likhachev 34

• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty

much)

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

Carnegie Mellon University

Maxim Likhachev Carnegie Mellon University 35

Effect of the Heuristic Function

sgoal

sstart

• Dijkstra’s: expands states in the order of f = g values

What are the states expanded?

Maxim Likhachev University of Pennsylvania 36

Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

What are the states expanded?

Maxim Likhachev University of Pennsylvania 37

Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly

running out of memory (memory: O(n))

Maxim Likhachev 38

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =

g+εh values, ε > 1 = bias towards states that are closer to

goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

what states are expanded?

– research question

Carnegie Mellon University

Maxim Likhachev 39

Effect of the Heuristic Function

• Weighted A* Search:

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude

faster than A*

– research becomes to develop a heuristic function that has

shallow local minima

Carnegie Mellon University

Maxim Likhachev 40

Effect of the Heuristic Function

• Weighted A* Search:

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude

faster than A*

– research becomes to develop a heuristic function that has

shallow local minima

Is it guaranteed to expand

no more states than A*?

Carnegie Mellon University

Maxim Likhachev 41

Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

Carnegie Mellon University

Maxim Likhachev 42

Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

•Inefficient because

–many state values remain the same between search iterations

–we should be able to reuse the results of previous searches

Carnegie Mellon University

Maxim Likhachev 43

Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

•ARA*(will be explained in a later lecture)

- an efficient version of the above that reuses state values within any search iteration

- will learn next lecture after we learn about incremental version of A*

Carnegie Mellon University

Maxim Likhachev 44

Effect of the Heuristic Function

• Useful properties to know:

- h1(s), h2(s) – consistent, then:

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics:

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal,

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then:

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University

Maxim Likhachev 45

Effect of the Heuristic Function

• Useful properties to know:

- h1(s), h2(s) – consistent, then:

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics:

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal,

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then:

h(s) = h1(s)+h2(s) – ε-consistent

Proof?

Carnegie Mellon University

Maxim Likhachev 46

Effect of the Heuristic Function

• Useful properties to know:

- h1(s), h2(s) – consistent, then:

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics:

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal,

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then:

h(s) = h1(s)+h2(s) – ε-consistent

Proof?

What is ε? Proof?

Carnegie Mellon University

Maxim Likhachev

Examples of Heuristic Function

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

• Robot arm planning:
– End-effector distance

– Any others???

Carnegie Mellon University

Maxim Likhachev

Examples of Heuristic Function

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

• Robot arm planning:
– End-effector distance

– Any others???

Carnegie Mellon University

Maxim Likhachev

Examples of Heuristic Function

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

• Autonomous door opening:
– Heuristic function???

Carnegie Mellon University

Maxim Likhachev 50

Memory Issues

• A* does provably minimum number of expansions (O(n)) for finding

a provably optimal solution

• Memory requirements of A* (O(n)) can be improved though

• Memory requirements of weighted A* are often but not always better

Carnegie Mellon University

Maxim Likhachev 51

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

Carnegie Mellon University

Maxim Likhachev 52

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

• Example:

– graph: a 4-connected grid of 40 by 40 cells, start: center of the grid

– A* expands up to 800 states, DFS may expand way over 420 > 1012 states

Carnegie Mellon University

Maxim Likhachev 53

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

• Example:

– graph: a 4-connected grid of 40 by 40 cells, start: center of the grid

– A* expands up to 800 states, DFS may expand way over 420 > 1012 states

What if goal is few steps away in

a huge state-space?

Carnegie Mellon University

Maxim Likhachev 54

Memory Issues

• Alternatives:

– IDA* (Iterative Deepening A*)

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2

Carnegie Mellon University

Maxim Likhachev 55

Memory Issues

• Alternatives:

– IDA* (Iterative Deepening A*)

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2

• Complete and optimal in any state-space (with positive costs)

• Memory: O(bl), where b – max. branching factor, l – length of optimal

path

• Complexity: O(kbl), where k is the number of times DFS is called

Carnegie Mellon University

