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1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) 

path

The two steps above are often interleaved

Planning as Graph Search Problem

Carnegie Mellon University
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1. Construct a graph representing the planning problem  

(future lectures)

2. Search the graph for a (hopefully, close-to-optimal) 

path (three next lectures)

The two steps above are often interleaved

Planning as Graph Search Problem

Carnegie Mellon University
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• Cell decomposition 

- X-connected grids

- lattice-based graphs

• Skeletonization of the environment/C-Space

-Visibility graphs

- Voronoi diagrams

- Probabilistic roadmaps

Examples of Graph Construction

replicate action 

template online

Carnegie Mellon University
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• Cell decomposition 

- X-connected grids

- lattice-based graphs

• Skeletonization of the environment/C-Space

-Visibility graphs

- Voronoi diagrams

- Probabilistic roadmaps

Examples of Graph Construction

replicate action 

template online

Carnegie Mellon University

Will all be covered later
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Examples of Search-based Planning

Carnegie Mellon University

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path 

The two steps are often interleaved

motion planning for autonomous vehicles in 4D (<x,y,orientation,velocity>)
running Anytime Incremental A* (Anytime D*) on multi-resolution lattice 

[Likhachev & Ferguson, IJRR’09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
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Examples of Search-based Planning

Carnegie Mellon University

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path 

The two steps are often interleaved

8-dim foothold planning for quadrupeds using R* graph search 
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S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Searching Graphs for a Least-cost Path

• Once a graph is constructed (from skeletonization or uniform cell 

decomposition or adaptive cell decomposition or lattice or whatever else), we 

need to search it for a least-cost path

Carnegie Mellon University
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• Many searches work by computing optimal g-values for 
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy:     g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs for a Least-cost Path

Carnegie Mellon University
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• Many searches work by computing optimal g-values for 
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy:     g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs for a Least-cost Path

why? 

Carnegie Mellon University
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• Least-cost path is a greedy path computed by backtracking:

– start with sgoal and from any state s move to the predecessor state 
s’ such that 

)),''()''((minarg' )('' sscsgs spreds  

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

at any point of time:

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University
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• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality): 

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility follows from consistency and often consistency 

follows from admissibility

A* Search
minimal cost from s to sgoal

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

set of candidates for expansion

for every expanded state 

g(s) is optimal 
(if heuristics are consistent)

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

set of states that have already been expanded

tries to decrease g(s’) using the 

found path from sstart to s

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s1

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}

next state to expand: s4

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}

done

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path
why?

A* Search

Carnegie Mellon University
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• Is guaranteed to return an optimal path (in fact, for every 

expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions 

required to guarantee optimality – optimal in terms of the 

computations

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Is guaranteed to return an optimal path (in fact, for every 

expanded state) – optimal in terms of the solution

Sketch of proof by induction for h = 0:

assume all previously expanded states have optimal g-values

next state to expand is s: f(s) = g(s) – min among states in OPEN

OPEN separates expanded states from never seen states

thus, path to s via a state in OPEN or an unseen state will be 

worse than g(s) (assuming positive costs)

A* Search

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3
CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

Carnegie Mellon University
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• A* Search: expands states in the order of f = g+h values

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Effect of the Heuristic Function

expansion of s

Carnegie Mellon University
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• A* Search: expands states in the order of f = g+h values

Sketch of proof of optimality by induction for consistent h:

1. assume all previously expanded states have optimal g-values

2. next state to expand is s: f(s) = g(s)+h(s) – min among states in 

OPEN

3. assume g(s) is suboptimal

4. then there must be at least one state s’ on an optimal path from 

start to s such that it is in OPEN but wasn’t expanded

5. g(s’) + h(s’) ≥ g(s)+h(s)

6. but g(s’) + c*(s’,s) < g(s) => 

g(s’) + c*(s’,s) + h(s) < g(s) + h(s) =>

g(s’) + h(s’) < g(s) + h(s)

7. thus it must be the case that g(s) is optimal

Effect of the Heuristic Function

Carnegie Mellon University
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• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty 

much)

• Intuitively: f(s) – estimate of the cost of a least cost path 

from start to goal via s

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

Carnegie Mellon University
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• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty 

much)

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

Carnegie Mellon University
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Effect of the Heuristic Function

sgoal

sstart

• Dijkstra’s: expands states in the order of f = g values

What are the states expanded?
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Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

What are the states expanded?
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Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly 

running out of memory (memory: O(n))
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Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f = 

g+εh values, ε > 1 = bias towards states that are closer to 

goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

what states are expanded? 

– research question

Carnegie Mellon University



Maxim Likhachev 39

Effect of the Heuristic Function

• Weighted A* Search: 

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude 

faster than A*

– research becomes to develop a heuristic function that has 

shallow local minima

Carnegie Mellon University
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Effect of the Heuristic Function

• Weighted A* Search: 

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude 

faster than A*

– research becomes to develop a heuristic function that has 

shallow local minima

Is it guaranteed to expand 

no more states than A*?

Carnegie Mellon University
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Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

Carnegie Mellon University
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Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

•Inefficient because 

–many state values remain the same between search iterations

–we should be able to reuse the results of previous searches

Carnegie Mellon University
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Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

•ARA*(will be explained in a later lecture)

- an efficient version of the above that reuses state values within any search iteration

- will learn next lecture after we learn about incremental version of A*

Carnegie Mellon University
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Effect of the Heuristic Function

• Useful properties to know:

- h1(s), h2(s) – consistent, then: 

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics: 

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal, 

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then: 

h(s) = h1(s)+h2(s) – ε-consistent
Carnegie Mellon University
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Effect of the Heuristic Function

• Useful properties to know:

- h1(s), h2(s) – consistent, then: 

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics: 

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal, 

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then: 

h(s) = h1(s)+h2(s) – ε-consistent

Proof?

Carnegie Mellon University
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Effect of the Heuristic Function

• Useful properties to know:

- h1(s), h2(s) – consistent, then: 

h(s) = max(h1(s),h2(s)) – consistent

- if A* uses ε-consistent heuristics: 

h(sgoal) = 0 and h(s) ≤ ε c(s,succ(s)) + h(succ(s) for all s≠sgoal, 

then A* is ε-suboptimal:

cost(solution) ≤ ε cost(optimal solution)

- weighted A* is A* with ε-consistent heuristics

- h1(s), h2(s) – consistent, then: 

h(s) = h1(s)+h2(s) – ε-consistent

Proof?

What is ε? Proof?
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Examples of Heuristic Function

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

• Robot arm planning:
– End-effector distance

– Any others???
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Examples of Heuristic Function

• For grid-based navigation:

– Euclidean distance

– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)

– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))

– More informed distances???

• Autonomous door opening:
– Heuristic function???
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Memory Issues

• A* does provably minimum number of expansions (O(n)) for finding 

a provably optimal solution

• Memory requirements of A* (O(n)) can be improved though

• Memory requirements of weighted A* are often but not always better
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Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the 

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

Carnegie Mellon University



Maxim Likhachev 52

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the 

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

• Example: 

– graph: a 4-connected grid of 40 by 40 cells, start: center of the grid

– A* expands up to 800 states, DFS may expand way over 420 > 1012 states

Carnegie Mellon University



Maxim Likhachev 53

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the 

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

• Example: 

– graph: a 4-connected grid of 40 by 40 cells, start: center of the grid

– A* expands up to 800 states, DFS may expand way over 420 > 1012 states

What if goal is few steps away in

a huge state-space?
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Memory Issues

• Alternatives:

– IDA* (Iterative Deepening A*) 

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2
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Memory Issues

• Alternatives:

– IDA* (Iterative Deepening A*) 

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2

• Complete and optimal in any state-space (with positive costs)

• Memory: O(bl), where b – max. branching factor, l – length of optimal 

path

• Complexity: O(kbl), where k is the number of times DFS is called
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