A* and Weighted A* Search

Maxim Likhachev

Carnegie Mellon University

Planning as Graph Search Problem

1. Construct a graph representing the planning problem
2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem (future lectures)
2. Search the graph for a (hopefully, close-to-optimal) path (three next lectures)

The two steps above are often interleaved

Examples of Graph Construction

- Cell decomposition
- X-connected grids

- lattice-based graphs

- Skeletonization of the environment/C-Space
-Visibility graphs
- Voronoi diagrams
- Probabilistic roadmaps

Examples of Graph Construction

- Cell decomposition
- X-connected grids

- lattice-based graphs

Will all be covered later

- Skeletonization of the environment/C-Space
-Visibility graphs
- Voronoi diagrams
- Probabilistic roadmaps

Examples of Search-based Planning

1. Construct a graph representing the planning problem
2. Search the graph for a (hopefully, close-to-optimal) path The two steps are often interleaved
motion planning for autonomous vehicles in 4D (<x,y,orientation, velocity>) running Anytime Incremental A^{*} (Anytime D^{*}) on multi-resolution lattice [Likhachev \& Ferguson, IJRR'09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Examples of Search-based Planning

1. Construct a graph representing the planning problem
2. Search the graph for a (hopefully, close-to-optimal) path The two steps are often interleaved

8-dim foothold planning for quadrupeds using R^{*} graph search

Searching Graphs for a Least-cost Path

- Once a graph is constructed (from skeletonization or uniform cell decomposition or adaptive cell decomposition or lattice or whatever else), we need to search it for a least-cost path

Searching Graphs for a Least-cost Path

- Many searches work by computing optimal g-values for relevant states
$-g(s)$ - an estimate of the cost of a least-cost path from $s_{\text {start }}$ to s
- optimal values satisfy: $\quad g(s)=\min _{s^{\prime \prime} \in \operatorname{pred}(s)} g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)$ the cost $c\left(s_{l}, s_{\text {goal }}\right)$ of an edge from s_{1} to $s_{\text {goal }}$

Searching Graphs for a Least-cost Path

- Many searches work by computing optimal g-values for relevant states
$-g(s)$ - an estimate of the cost of a least-cost path from $s_{\text {start }}$ to s
- optimal values satisfy: $\quad g(s)=\min _{s^{\prime \prime} \in \operatorname{pred}(s)} g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)$ the cost $c\left(s_{l}, s_{\text {go }}\right.$
an edge from s_{1} lu
why

Searching Graphs for a Least-cost Path

- Least-cost path is a greedy path computed by backtracking:
- start with $s_{g o a l}$ and from any state s move to the predecessor state s 'such that

$$
s^{\prime}=\arg \min _{s^{\prime \prime} \in \operatorname{pred}(s)}\left(g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)\right)
$$

A* Search

- Computes optimal g-values for relevant states

at any point of time:

A* Search

- Computes optimal g-values for relevant states

at any point of time:

one popular heuristic function - Euclidean distance

A* Search

- Heuristic function must be:
- admissible: for every state $\mathrm{s}, h(s) \leq c^{*}\left(s, s_{\text {goal }}\right)$
- consistent (satisfy triangle inequality):

$$
h\left(s_{\text {goal }} s_{\text {gaal }}\right)=0 \text { and for every } s \neq s_{\text {goal }} h(s) \leq c(s, s u c c(s))+h(s u c c(s))
$$

- admissibility follows from consistency and often consistency follows from admissibility

A* Search

- Computes optimal g-values for relevant states

Main function

$g\left(s_{\text {start }}\right)=0$; all other g-values are infinite; $O P E N=\left\{s_{\text {start }}\right\}$;
ComputePath(); publish solution;

ComputePath function

```
set of candidates for expansion
``` while ( \(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); expand \(s\);


\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded)
remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); expand \(s\);

\section*{A* Search}

\section*{- Computes optimal g-values for relevant states}

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
if \(g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right)\)
\(g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ;\)
set of states that have already been expanded
tries to decrease \(g\left(s^{\prime}\right)\) using the
found path from \(s_{\text {start }}\) to \(s\)

Carnegie Mellon University \(\quad h=2\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\{ \}\) OPEN \(=\left\{s_{\text {start }}\right\}\)
next state to expand: \(s_{\text {start }}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into OPEN; }
\end{aligned}
\]

CLOSED \(=\{ \}\) OPEN \(=\left\{s_{\text {start }}\right\}\)
next state to expand: \(s_{\text {start }}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}\right\}\) OPEN \(=\left\{s_{2}\right\}\)
next state to expand: \(s_{2}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}\right\}\) OPEN \(=\left\{s_{1}, s_{4}\right\}\)
next state to expand: \(s_{1}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{1}\right\}\) OPEN \(=\left\{s_{4}, s_{\text {goal }}\right\}\)
next state to expand: \(s_{4}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }} s_{2}, s_{1}, s_{4}\right\}\) OPEN \(=\left\{s_{3}, s_{\text {goal }}\right\}\)
next state to expand: \(s_{\text {goal }}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }} s_{2}, s_{1}, s_{4}, s_{\text {goal }}\right\}\) OPEN \(=\left\{s_{3}\right\}\)
done

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Is guaranteed to return an optimal path (in fact, for every expanded state) - optimal in terms of the solution
- Performs provably minimal number of state expansions required to guarantee optimality - optimal in terms of the computations

\section*{A* Search}
- Is guaranteed to return an optimal path (in fact, for every expanded state) - optimal in terms of the solution Sketch of proof by induction for \(h=0\) : assume all previously expanded states have optimal \(g\)-values next state to expand is \(s: f(s)=g(s)\) - min among states in OPEN OPEN separates expanded states from never seen states thus, path to s via a state in OPEN or an unseen state will be worse than \(g(s)\) (assuming
CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{1}, s_{4}\right\}\) OPEN \(=\left\{s_{3}, s_{\text {goal }}\right\}\) next state to expand: \(s_{\text {goal }}\)

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in CLOSED if \(g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right)\) \(g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ;\) insert \(s\) ' into \(O P E N\);

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values Sketch of proof of optimality by induction for consistent \(h\) :
1. assume all previously expanded states have optimal \(g\)-values
2. next state to expand is \(s: f(s)=g(s)+h(s)-\) min among states in OPEN
3. assume \(g(s)\) is suboptimal
4. then there must be at least one state s' on an optimal path from start to s such that it is in OPEN but wasn't expanded
5. \(g\left(s^{\prime}\right)+h\left(s^{\prime}\right) \geq g(s)+h(s)\)
6. but \(g\left(s^{\prime}\right)+c^{*}\left(s^{\prime}, s\right)<g(s)=>\)
\[
\begin{aligned}
& g\left(s^{\prime}\right)+c^{*}\left(s^{\prime}, s\right)+h(s)<g(s)+h(s)=> \\
& g\left(s^{\prime}\right)+h\left(s^{\prime}\right)<g(s)+h(s)
\end{aligned}
\]
7. thus it must be the case that \(g(s)\) is optimal

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values
- Dijkstra's: expands states in the order of \(f=g\) values (pretty much)
- Intuitively: \(f(s)\) - estimate of the cost of a least cost path from start to goal via s
\[
\begin{aligned}
& \text { an (under) estimate of the cost } \\
& \text { of a shortest path from s to } s_{\text {goal }}
\end{aligned}
\]

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values
- Dijkstra's: expands states in the order of \(f=g\) values (pretty much)
- Weighted A*: expands states in the order of \(f=g+\varepsilon h\) values, \(\varepsilon>l=\) bias towards states that are closer to goal

\section*{Effect of the Heuristic Function}
- Dijkstra's: expands states in the order of \(f=g\) values

> What are the states expanded?

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values

> What are the states expanded?

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values
for large problems this results in \(A^{*}\) quickly running out of memory (memory: \(O(n)\))

\section*{Effect of the Heuristic Function}
- Weighted \(\mathrm{A}^{*}\) Search: expands states in the order of \(f=\) \(g+\varepsilon h\) values, \(\varepsilon>l=\) bias towards states that are closer to goal

> what states are expanded?
> - research question

\section*{Effect of the Heuristic Function}
- Weighted A* Search:
- trades off optimality for speed
- \(\varepsilon\)-suboptimal: \(\operatorname{cost}(\) solution \() \leq \varepsilon \operatorname{cost}(\) optimal solution)
- in many domains, it has been shown to be orders of magnitude faster than \(\mathrm{A}^{*}\)
- research becomes to develop a heuristic function that has shallow local minima

\section*{Effect of the Heuristic Function}
- Weighted A* Search:
- trades off optimality for speed
- \(\varepsilon\)-suboptimal: \(\operatorname{cost}(\) solution \() \leq \varepsilon \operatorname{cost}\left(\right.\) optimal \({ }^{-}\)-
- in many domains, it has ber Is it guaranteed to expand faster than \(\mathrm{A}^{*} \quad\) no more states than \(A^{*}\) ?
- research becomes to develop a heurisuc iumuvi uat has shallow local minima

\section*{Effect of the Heuristic Function}
- Constructing anytime search based on weighted A*:
- find the best path possible given some amount of time for planning
- do it by running a series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :

13 expansions
solution=11 moves

15 expansions
solution= 11 moves

20 expansions
solution \(=10\) moves

\section*{Effect of the Heuristic Function}
- Constructing anytime search based on weighted \(\mathrm{A}^{*}\) :
- find the best path possible given some amount of time for planning
- do it by running a series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :

13 expansions solution= 11 moves

15 expansions
solution=11 moves

20 expansions
solution \(=10\) moves
-Inefficient because
-many state values remain the same between search iterations
-we should be able to reuse the results of previous searches

\section*{Effect of the Heuristic Function}
- Constructing anytime search based on weighted \(\mathrm{A}^{*}\) :
- find the best path possible given some amount of time for planning
- do it by running a series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :

13 expansions solution=11 moves

15 expansions
solution=11 moves

20 expansions
solution \(=10\) moves
- ARA* (will be explained in a later lecture)
- an efficient version of the above that reuses state values within any search iteration
- will learn next lecture after we learn about incremental version of A*

\section*{Effect of the Heuristic Function}
- Useful properties to know:
- \(h_{1}(s), h_{2}(s)\) - consistent, then:
\[
h(s)=\max \left(h_{l}(s), h_{2}(s)\right)-\text { consistent }
\]
- if A* uses \(\varepsilon\)-consistent heuristics:
\[
h\left(s_{\text {goal }}\right)=0 \text { and } h(s) \leq \varepsilon c(s, \operatorname{succ}(s))+h\left(\operatorname{succ}(s) \text { for all } s \neq s_{\text {goal }},\right.
\]
then \(\mathrm{A}^{*}\) is \(\varepsilon\)-suboptimal:
\[
\operatorname{cost}(\text { solution }) \leq \varepsilon \operatorname{cost}(\text { optimal solution })
\]
- weighted \(\mathrm{A}^{*}\) is \(\mathrm{A}^{*}\) with \(\varepsilon\)-consistent heuristics
- \(h_{l}(s), h_{2}(s)\) - consistent, then:
\[
h(s)=h_{l}(s)+h_{2}(s)-\varepsilon \text {-consistent }
\]

\section*{Effect of the Heuristic Function}
- Useful properties to know:
- \(h_{1}(s), h_{2}(s)\) - consistent, then:
\[
h(s)=\max \left(h_{l}(s), h_{2}(s)\right)-\text { consistent }
\]
- if A* uses \(\varepsilon\)-consistent heuristics:
\[
h\left(s_{\text {goal }}\right)=0 \text { and } h(s) \leq \varepsilon c(s, \operatorname{succ}(s))+h\left(\operatorname{succ}(s) \text { for all } s \neq s_{\text {goal }},\right.
\]
then \(A^{*}\) is \(\varepsilon\)-suboptimal:
\[
\operatorname{cost}(\text { solution }) \leq \varepsilon \operatorname{cost}(\text { optimal solution })
\]
- weighted \(\mathrm{A}^{*}\) is \(\mathrm{A}^{*}\) with \(\varepsilon\)-consistent heuristics
- \(h_{l}(s), h_{2}(s)\) - consistent, then:
\[
h(s)=h_{l}(s)+h_{2}(s)-\varepsilon \text {-consistent }
\]

\section*{Effect of the Heuristic Function}
- Useful properties to know:
- \(h_{1}(s), h_{2}(s)\) - consistent, then:
\[
h(s)=\max \left(h_{l}(s), h_{2}(s)\right)-\text { consistent }
\]
- if A* uses \(\varepsilon\)-consistent heuristics:
\[
h\left(s_{\text {goal }}\right)=0 \text { and } h(s) \leq \varepsilon c(s, \operatorname{succ}(s))+h\left(\operatorname{succ}(s) \text { for all } s \neq s_{\text {goal }},\right.
\]
then \(A^{*}\) is \(\varepsilon\)-suboptimal:
\[
\operatorname{cost}(\text { solution }) \leq \varepsilon \operatorname{cost}(\text { optimal solution })
\]
- weighted \(\mathrm{A}^{*}\) is \(\mathrm{A}^{*}\) with \(\varepsilon\)-consistent heuristics
- \(h_{l}(s), h_{2}(s)\) - consistent, then:
\[
h(s)=h_{l}(s)+h_{2}(s)-\varepsilon \text {-consistent }
\]

\section*{Examples of Heuristic Function}
- For grid-based navigation:
- Euclidean distance

- Manhattan distance: \(h(x, y)=a b s\left(x-x_{\text {goal }}\right)+a b s\left(y-y_{\text {goal }}\right)\)
- Diagonal distance: \(h(x, y)=\max \left(\operatorname{abs}\left(x-x_{\text {goal }}\right), \operatorname{abs}\left(y-y_{\text {goal }}\right)\right)\)
- More informed distances???
- Robot arm planning:
- End-effector distance
- Any others???

\section*{Examples of Heuristic Function}
- For grid-based navigation:
- Euclidean distance

- Manhattan distance: \(h(x, y)=a b s\left(x-x_{\text {goal }}\right)+a b s\left(y-y_{\text {goal }}\right)\)
- Diagonal distance: \(h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)\)
- More informed distances???
- Robot arm planning:
- End-effector distance
- Any others???

\section*{Examples of Heuristic Function}
- For grid-based navigation:
- Euclidean distance

- Manhattan distance: \(h(x, y)=a b s\left(x-x_{\text {goal }}\right)+a b s\left(y-y_{\text {goal }}\right)\)
- Diagonal distance: \(h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)\)
- More informed distances???
- Autonomous door opening:
- Heuristic function???

\section*{Memory Issues}
- A* does provably minimum number of expansions \((\mathrm{O}(\mathrm{n}))\) for finding a provably optimal solution
- Memory requirements of \(A^{*}(\mathrm{O}(\mathrm{n}))\) can be improved though
- Memory requirements of weighted A* are often but not always better

\section*{Memory Issues}
- Alternatives:
- Depth-First Search (w/o coloring all expanded states):
- explore each every possible path at a time avoiding looping and keeping in the memory only the best path discovered so far
- Complete and optimal (assuming finite state-spaces)
- Memory: \(O(b m)\), where \(b\) - max. branching factor, \(m-\) max. pathlength
- Complexity: \(O\left(b^{m}\right)\), since it will repeatedly re-expand states

\section*{Memory Issues}

\section*{- Alternatives:}
- Depth-First Search (w/o coloring all expanded states):
- explore each every possible path at a time avoiding looping and keeping in the memory only the best path discovered so far
- Complete and optimal (assuming finite state-spaces)
- Memory: \(O(b m)\), where \(b\) - max. branching factor, \(m\) - max. pathlength
- Complexity: \(O\left(b^{m}\right)\), since it will repeatedly re-expand states
- Example:
- graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
- A* expands up to 800 states, DFS may expand way over \(4{ }^{20}>10^{12}\) states

\section*{Memory Issues}
- Alternatives:
- Depth-First Search (w/o coloring all expanded states):
- explore each every possible path at a time avoiding looping and keeping in the memory only the best path discovered so far
- Complete and optimal (assuming finite state-spaces)
- Memory: \(O(b m)\), where \(b\)-mav̌What if goal is few steps away in
- Complexity: \(O\left(b^{m}\right)\), since it wı. a huge state-space?
- Example:
- graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
- A* expands up to 800 states, DFS may expand way over \(4^{20}>10^{12}\) states

\section*{Memory Issues}

\section*{Alternatives:}
- IDA* (Iterative Deepening A*)
1. \(\operatorname{set} f_{\max }=1\) (or some other small value)
2. execute (previously explained) DFS that does not expand states with \(f>f_{\max }\)
3. If DFS returns a path to the goal, return it
4. Otherwise \(f_{\max }=f_{\max }+1\) (or larger increment) and go to step 2

\section*{Memory Issues}

\section*{Alternatives:}
- IDA* (Iterative Deepening A*)
1. \(\operatorname{set} f_{\max }=l\) (or some other small value)
2. execute (previously explained) DFS that does not expand states with \(f>f_{\max }\)
3. If DFS returns a path to the goal, return it
4. Otherwise \(f_{\max }=f_{\max }+1\) (or larger increment) and go to step 2
- Complete and optimal in any state-space (with positive costs)
- Memory: \(O(b l)\), where \(b\) - max. branching factor, \(l\) - length of optimal path
- Complexity: \(O\left(k b^{l}\right)\), where \(k\) is the number of times DFS is called```

