Robotic Motion Planning: Controls Primer

Robotics Institute 16-735 http://www.cs.cmu.edu/~motion

Howie Choset http://www.cs.cmu.edu/~choset

16-735, Howie Choset with slides from Vincent Lee-Shue Jr. Prasad Narendra Atkar, and Kevin Tantisevi

State Space

$$m\ddot{z}(t) = -\gamma \dot{z}(t) - kz(t)$$

Model of mass spring damper system

z(t) position, $\dot{z}(t)$ velocity t_0 initial time, $z(t_0)$, $\dot{z}(t_0)$ initial position & velocity

 $\dot{x}(t) = Ax(t); \qquad x(t_0) = x_0$ $x(t) \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$

Vector Field

assigns a vector Ax to each point x in the state space. $\dot{x}(t) = Ax(t);$ $x(t_0) = x_0$

$$x(t) = e^{A(t-t_0)} x_0 = \sum_{i=0}^{\infty} \frac{A^i(t-t_0)^i}{i!} = I_{n \times n} + A(t-t_0) + \frac{A^2(t-t_0)^2}{2!} + \cdots$$

Stability

$$x(t) = e^{A(t-t_0)}x_0$$
 $\dot{x}(t) = Ax(t);$ $x(t_0) = x_0$

Equilibrium $\dot{x} = 0$ which occurs here at $x_e = 0$

for every $\varepsilon > 0$, there exists a δ for initial conditions $||x_e - x(t_0)|| < \delta$

<u>Asymptotic Stability:</u> $||x_e - x(t)|| \to 0 \text{ as } t \to \infty$

Unstable: Neither

Stability and Eigenvalues

let λ_i , $i \in \{1, 2, ..., n\}$ denote the eigenvalues of A. Let re(λ_i) denote the real part of λ_i Then the following holds: 1. $x_e = 0$ is stable if and only if re(λ_i) ≤ 0 for all i. 2. $x_e = 0$ is asymptotically stable if and only if re(λ_i) < 0 for all i. 3. $x_e = 0$ is unstable if and only if re(λ_i) > 0 for any i.

Negative damping....

Apply a force (a control input)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{\gamma}{m} \end{bmatrix} x(t) + \begin{bmatrix} 0\\ \frac{1}{m} \end{bmatrix} F(t)$$

$$\dot{x}(t) = Ax(t) + Bu(t); \qquad x(t_0) = x_0,$$
$$x(t) \in \mathbb{R}^n \qquad \qquad u(t) \in \mathbb{R}^m$$
$$B \in \mathbb{R}^{n \times m}$$

Controlability

For any initial condition $x(t_0)$, there exists an input u(t) that drives the solution x(t) to the origin*

 $\dot{x}(t) = Ax(t) + Bu(t); \qquad x(t_0) = x_0$

The LTI is control system controllable if and only if W has rank n where

 $W = [B A B A^2 B \dots A^{n-1} B]$

*(assuming the origin is an equilibrium point for the unforced system)

Closed Loop Stability: Pole Placement

Make an unforced unstable system stable

$$\dot{x}(t) = Ax(t) + Bu(t)$$
State dependent control law
$$\dot{x}(t) = \overbrace{(A - BK)}{}x(t)$$
Iook at the eigenvalues
For a real valued matrix, if an eigenvalue $a + ib$
has $b \neq 0$, then $a - ib$ is an eigenvalue
So,
$$\Lambda = \{\lambda_i | i \in \{1, 2, ..., n\}\}$$
Is allowable if for each λ_i that has an imaginary part, there is a λ_i
that is a complex conjugate
$$Assume$$
This system is controllable, i.e., the pair (A, B) is controllable
B is full rank
$$\Lambda = \{\lambda_i | i \in \{1, 2, ..., n\}\}$$
is an allowable set of complex numbers
Then there exists an constant matrix $K \in \mathbb{R}^{m \times n}$ so that $(A - BK)$ is equal to Λ

What does this mean?

• To stabilize

٠

 Find a K so that the Eigenvalues of A – BK have negative real values and are complex conjugates.

• The famous LQR does this by optimizing a user-defined cost function.

Example

• Mass-spring-damper (negative damping - why)

$$A - BK = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{\gamma}{m} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \begin{bmatrix} k_1 \ k_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k+k_1}{m} & \frac{\gamma+k_2}{m} \end{bmatrix}$$

• Eigenvalues

$$\frac{(-\gamma - k_2) \pm \sqrt{(-\gamma - k_2)^2 - 4(k - k_1)m}}{2m},$$

- Chose k_2 such that $-\gamma k_2 < 0$.
- This is like adding positive damping

Observing LTI Systems

Sadly, one cannot always sense all of the state variables ←

$$\dot{x}(t) = Ax(t) + Bu(t);$$
 $x(t_0) = x_0,$
 $y(t) = Cx(t),$

statecontroloutput $x(t) \in \mathbb{R}^n$ $u(t) \in \mathbb{R}^m$ $y(t) \in \mathbb{R}^p$ $C \in \mathbb{R}^{p \times n}$.May not be invertible (nor square)

• Example: can only sense or measure velocity

$$\begin{array}{lll} \dot{x}(t) & = & \left[\begin{array}{c} 0 & 1 \\ -\frac{k}{m} & -\frac{\gamma}{m} \end{array} \right] x(t) + \left[\begin{array}{c} 0 \\ \frac{1}{m} \end{array} \right] F(t), \\ y(t) & = & \left[0 \ 1 \right] x(t), \end{array}$$

• Can we recover the state from the observations??

Observable

A system is **observable** if one can determine the initial state by observing the output and knowing the controls over some period of time

The system

$$\dot{x}(t) = Ax(t) + Bu(t);$$
 $x(t_0) = x_0$
 $y(t) = Cx(t),$

Is observable if $\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$ has rank n

The pair (A,C) is considered observable.

(A,C) observable if and only if (A^{T}, C^{T}) is controllable

If (A,B) controllable and (A,C) observable, then (A,B,C) is *minimal*

Observer

Copy of original system with a correcting term $K(y(t) - C\hat{x}(t))$ which is the difference between the output and estimated output

How does this work

• Consider the error $e(t) = x(t) - \hat{x}(t)$

$$\begin{split} \dot{e}(t) &= \dot{x}(t) - \dot{\hat{x}}(t) \\ &= Ax(t) + Bu(t) - (A\hat{x}(t) + Bu(t) + K(y(t) - C\hat{x}(t))) \\ &= A(x(t) - \hat{x}(t)) - K(Cx(t) - C\hat{x}(t)) \\ &= (A - KC)e(t) \end{split}$$

• As
$$e(t) \to 0$$
, then $\hat{x}(t) \to x(t)$

- Chose K so that $\dot{e}(t) = (A KC)e(t)$ asymp. Stable
- Look at eigenvalues of *A KC* (not quite right form)
- Look at eigenvalues of $A^t C^t K^t$ (same eigenvalues)
- Make sure such eigenvalues are allowable
 - Make sure (A^t, C^t) is controllable
 - C^t is full rank
- Same as saying (A,C) is observable
- So it is a matter of choosing *K*

Example

$$\begin{aligned} \dot{x}(t) &= \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{\gamma}{m} \end{bmatrix} x(t) + \begin{bmatrix} 0\\ \frac{1}{m} \end{bmatrix} F(t), \\ y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} x(t), \end{aligned}$$

$$A - KC = \begin{bmatrix} 0 & 1 - k_1 \\ -\frac{k}{m} & -\frac{\gamma}{m} - k_2 \end{bmatrix}$$

$$\frac{-(\gamma + mk_2) \pm \sqrt{(-\gamma - mk_2)^2 - 4m(k - k_1)}}{2m}$$

Chose k_2 such that $-\gamma - mk_2 < 0$

Discrete Time

$$\dot{x}(t_0 + kT) \approx \frac{x(k+1) - x(k)}{T} \approx Ax(k) + Bu(k)$$
$$x(k+1) \approx x(k) + TAx(k) + TBu(k)$$

 $F = I_{n \times n} + TA, G = TB$, and $H = C_{1}$

$$\begin{array}{rcl} \dot{x}(k+1) &=& Fx(k) + Gu(k); & x(0) = x_0 \\ y(k) &=& Hx(k) \end{array}$$

Properties

• Stability of x(k+1) = F(x) x(k)

- Let $\lambda_i, i \in \{1, 2, ..., n\}$ denote the eigenvalues of F

 $x_e = 0$ is stable if and only if $|\lambda_i| \le 1$ for all *i*. $x_e = 0$ is asymptotically stable if and only if $|\lambda_i| < 1$ for all *i* $x_e = 0$ is unstable if and only if $|\lambda_i| > 1$ for any *i*.

• Controllability of (*F*,*G*)

 $[G \ FG \ F^2G \ \cdots \ F^{n-1}G]$ has rank n

• Observability of (F,H) – if F^t , H^t is controllable