Last lecture

- Multiple-query PRM
- Lazy PRM (single-query PRM)

Single-Query PRM

Randomized expansion

Path Planning in Expansive Configuration Spaces,
 D. Hsu, J.C. Latombe, & R. Motwani, 1999.

Overview

- 1. Grow two trees from Init position and Goal configurations.
- 2. Randomly sample nodes around existing nodes.
- 3. Connect a node in the tree rooted at <u>Init</u> to a node in the tree rooted at the <u>Goal</u>.

- 1. Pick a node x with probability 1/w(x).
- 2. Randomly sample k points around x.
- For each sample y, calculate w(y), which gives probability 1/w(y).

5

- 1. Pick a node x with probability 1/w(x).
- 2. Randomly sample k points around x.
- For each sample y, calculate w(y), which gives probability 1/w(y).

- 1. Pick a node x with probability 1/w(x).
- 2. Randomly sample k points around x.
- For each sample y, calculate w(y), which gives probability 1/w(y).

- 1. Pick a node x with probability 1/w(x).
- 2. Randomly sample k points around x.
- For each sample y, calculate w(y), which gives probability 1/w(y).

- 1. Pick a node x with probability 1/w(x).
- 2. Randomly sample k points around x.
- For each sample y, calculate w(y), which gives probability 1/w(y). If y
 (a) has higher probability; (b) collision free; (c) can sees x then add y into the tree.

9

Sampling distribution

- □ Weight w(x) = no. of neighbors
- **Roughly** $Pr(x) \sim 1 / w(x)$

Effect of weighting

unweighted sampling

weighted sampling

Connection

If a pair of nodes (*i.e.*, *x* in <u>Init</u> tree and *y* in <u>Goal</u> tree) and distance(*x*,*y*)<*L*, check if
 x can see *y* YES, then connect *x* and *y*

Termination condition

- The program iterates between Expansion and Connection, until
 - two trees are connected, or
 - max number of expansion & connection steps is reached

Computed example

NUS CS 5247 David Hsu

14

Expansive Spaces

Analysis of Probabilistic Roadmaps

Issues of probabilistic roadmaps

- Coverage
- Connectivity

Is the coverage adequate?

It means that milestones are distributed such that almost <u>any</u> point of the configuration space can be connected by a straight line segment to one milestone.

Connectivity

There should be a one-to-one correspondence between the connected components of the roadmap and those of *F*.

Narrow passages

- Connectivity is difficult to capture when there are narrow passages.
- Narrow passages are difficult to define.

Characterize coverage & connectivity? → Expansiveness

NUS CS 5247 David Hsu

19

Definition: visibility set

- Visibility set of q
 - All configurations in F that can be connected to q by a straight-line path in F
 - All configurations seen by q

Definition: E-good

Every free configuration sees at least *c* fraction of the free space, *c* in (0,1].

Definition: lookout of a subset S

Subset of points in *S* that can see at least β fraction of $F \setminus S$, β is in (0,1].

Definition: $(\varepsilon, \alpha, \beta)$ -expansive

- **The free space** F is $(\varepsilon, \alpha, \beta)$ -expansive if
 - Free space F is ε -good
 - For each subset S of F, its β-lookout is at least α fraction of S. ε,α,β are in (0,1]

F is ϵ -good $\rightarrow \epsilon$ =0.5

 β -lookout $\rightarrow \beta = 0.4$

 $\frac{\text{Volume}(\beta\text{-lookout})}{\text{Volume}(S)} \rightarrow \alpha = 0.2$

F is $(\varepsilon, \alpha, \beta)$ -expansive, where $\varepsilon=0.5$, $\alpha=0.2$, $\beta=0.4$.

Why expansiveness?

- **\Box** ε, α, and β measure the expansiveness of a free space.
- Bigger ε, α, and $\beta \rightarrow$ lower cost of constructing a roadmap with good connectivity and coverage.

Uniform sampling

All-pairs path planning

Theorem 1 : A roadmap of $\frac{16\ln(1/\gamma)}{\epsilon\alpha} + \frac{6}{\beta}$

uniformly-sampled milestones has the correct connectivity with probability at least $1-\gamma$.

Definition: Linking sequence

 P_{n+1} is chosen from the lookout of the subset seen by p, $p_1, ..., p_n$

Definition: Linking sequence

 P_{n+1} is chosen from the lookout of the subset seen by p, $p_1, ..., p_n$

Space occupied by linking sequences

Size of lookout set

A C-space with larger lookout set has higher probability of constructing a linking sequence.

Lemmas

In an expansive space with large ε,α, and β, we can obtain a linking sequence that covers a large fraction of the free space, with high probability.

Theorem 1

- Probability of achieving good connectivity increases exponentially with the number of milestones (in an expansive space).
- □ If (ε, α, β) decreases \rightarrow then need to increase the number of milestones (to maintain good connectivity)

Theorem 2

Probability of achieving good coverage, increases exponentially with the number of milestones (in an expansive space). In an expansive space, the probability that a PRM planner fails to find a path when one exists goes to 0 exponentially in the number of milestones (~ running time).

[Hsu, Latombe, Motwani, 97]

Summary

Main result

- If a C-space is expansive, then a roadmap can be constructed efficiently with good connectivity and coverage.
- Limitation in practice
 - It does not tell you when to stop growing the roadmap.
 - A planner stops when either a path is found or max steps are reached.

Extensions

Accelerate the planner by automatically generating intermediate configurations to decompose the free space into expansive components.

Extensions

- Accelerate the planner by automatically generating intermediate configurations to decompose the free space into expansive components.
- Use geometric transformations to increase the expansiveness of a free space, *e.g.*, widening narrow passages.

Extensions

- Accelerate the planner by automatically generating intermediate configurations to decompose the free space into expansive components.
- Use geometric transformations to increase the expansiveness of a free space, *e.g.*, widening narrow passages.
- Integrate the new planner with other planner for multiple-query path planning problems.

Two tenets of PRM planning

- A relatively small number of milestones and local paths are sufficient to capture the connectivity of the free space.
 - → Exponential convergence in expansive free space (probabilistic completeness)
- Checking sampled configurations and connections between samples for collision can be done efficiently.
 - \rightarrow Hierarchical collision checking