Last lecture

- Configuration Space
 - Free-Space and C-Space Obstacles

1

Minkowski Sums

Free-Space and C-Space Obstacle

- How do we know whether a configuration is in the free space?
- Computing an explicit representation of the freespace is very hard in practice?

Free-Space and C-Space Obstacle

- How do we know whether a configuration is in the free space?
- Computing an explicit representation of the free-space is very hard in practice?
- Solution: Compute the position of the robot at that configuration in the workspace. Explicitly check for collisions with any obstacle at that position:
 - If colliding, the configuration is within C-space obstacle
 - Otherwise, it is in the free space
- Performing collision checks is relative simple

Two geometric primitives in configuration space

CLEAR(q)

Is configuration q collision free or not?

LINK(q, q') Is the straight-line path between q and q' collisionfree?

Probabilistic Roadmaps

NUS CS 5247 David Hsu

Difficulty with classic approaches

- Running time increases exponentially with the dimension of the configuration space.
 - For a *d*-dimension grid with 10 grid points on each dimension, how many grid cells are there?

Several variants of the path planning problem have been proven to be PSPACE-hard.

Completeness

- □ Complete algorithm \rightarrow Slow
 - A complete algorithm finds a path if one exists and reports no otherwise.
 - Example: Canny's roadmap method
- □ Heuristic algorithm \rightarrow Unreliable
 - Example: potential field

Probabilistic completeness

Intuition: If there is a solution path, the algorithm will find it with high probability.

Probabilistic Roadmap (PRM): multiple queries

Probabilistic Roadmap (PRM): single query

Multiple-Query PRM

NUS CS 5247 David Hsu

Classic multiple-query PRM

Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces, L. Kavraki et al., 1996.

Assumptions

- Static obstacles
- Many queries to be processed in the same environment
- Examples
 - Navigation in static virtual environments
 - Robot manipulator arm in a workcell

Overview

Precomputation: roadmap construction

- Uniform sampling
- Resampling (expansion)
- Query processing

Uniform sampling

Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)

1: $V \leftarrow \emptyset$ and $E \leftarrow \emptyset$.

2: repeat

8:

- 3: $q \leftarrow a$ configuration sampled uniformly at random from C.
- 4: if CLEAR(q) then
- 5: Add q to V.
- 6: $N_q \leftarrow a$ set of nodes in V that are close to q.
- 6: for each $q' \in N_{q}$, in order of increasing d(q,q')
- 7: if LINK(q',q) then
 - Add an edge between q and q' to E.

Some terminology

- The graph G is called a probabilistic roadmap.
- The nodes in G are called milestones.

Difficulty

Many small connected components

Resampling (expansion)

Failure rate

 $r(q) = \frac{\text{no. failed LINK}}{\text{no. LINK}}$

Weight

Resampling probability Pr(q) = w(q)

Resampling (expansion)

Query processing

- \Box Connect q_{init} and q_{goal} to the roadmap
- □ Start at q_{init} and q_{goal} , perform a random walk, and try to connect with one of the milestones nearby
- Try multiple times

Error

- If a path is returned, the answer is always correct.
- If no path is found, the answer may or may not be correct. We hope it is correct with high probability.

Why does it work? Intuition

A small number of milestones almost "cover" the entire configuration space.

Rigorous definitions and proofs in the next lecture.

Smoothing the path

Smoothing the path

23

Summary

- What probability distribution should be used for sampling milestones?
- How should milestones be connected?
- A path generated by a randomized algorithm is usually jerky. How can a path be smoothed?

Single-Query PRM

NUS CS 5247 David Hsu

Lazy PRM

Path Planning Using Lazy PRM, R. Bohlin & L. Kavraki, 2000.

Precomputation: roadmap construction

Nodes

- Randomly chosen configurations, which may or may not be collision-free
- No call to CLEAR
- Edges
 - an edge between two nodes if the corresponding configurations are close according to a suitable metric
 - no call to LINK

Query processing: overview

- 1. Find a shortest path in the roadmap
- 2. Check whether the nodes and edges in the path are collision.
- 3. If yes, then done. Otherwise, remove the nodes or edges in violation. Go to (1).

We either find a collision-free path, or exhaust all paths in the roadmap and declare failure.

Query processing: details

Find the shortest path in the roadmap

- A* algorithm
- Dijkstra's algorithm
- Check whether nodes and edges are collisions free
 - CLEAR(q)
 - LINK (q_0, q_1)

Node enhancement

Select nodes that close the boundary of F

Sampling a Point Uniformly at Random

NUS CS 5247 David Hsu

Positions

Unit interval Pick a random number from [0,1]

Intervals scaled & shifted

What shall we do?

If x is a random number from [0,1], then 7x-2.

Orientations in 2-D

- Sampling
 - 1. Pick *x* uniform at random from [-1,1]
 - 2. Set $y = \sqrt{1 x^2}$
- Intervals of same widths are sampled with equal probabilities

Orientations in 2-D

Sampling

- 1. Pick θ uniformly at random from [0, 2π]
- 2. Set $x = \cos\theta$ and $y = \sin\theta$
- Circular arcs of same angles are sampled with equal probabilities.

What is the difference?

- Both are uniform in some sense.
- For sampling orientations in 2-D, the second method is usually more appropriate.

The definition of uniform sampling depends on the task at hand and not on the mathematics.

Orientations in 3-D

- □ Unit quaternion (cos $\xi/2$, $n_x \sin \xi/2$, $n_y \sin \xi/2$, $n_z \sin \xi/2$) with $n_x^2 + n_y^2 + n_z^2 = 1$.
- **Sample n** and θ separately
- Sample ξ from [0, 2 π] uniformly at random

Sampling a point on the unit sphere

Longitude and latitude

$$\begin{cases} n_x = \sin\theta\cos\varphi \\ n_y = \sin\theta\sin\varphi \\ n_z = \cos\theta \end{cases}$$

First attempt

Choose θ and φ uniformly at random from [0, 2π] and [0, π], respectively.

Better solution

- Spherical patches of same areas are sampled with equal probabilities.
- Suppose U₁ and U₂ are chosen uniformly at random from [0,1].

$$\begin{cases} n_z = U_1 \\ n_x = R\cos(2\pi U_2) \\ n_y = R\sin(2\pi U_2) \end{cases}$$

where $R = \sqrt{1 - U_1^2}$

Medial Axis based Planning

- Use medial axis based sampling
 - Medial axis: similar to internal Voronoi diagram; set of points that are equidistant from the obstacle
 - Compute approximate Voronoi boundaries using discrete computation

Medial Axis based Planning

- Sample the workspace by taking points on the medial axis
 - Medial axis of the workspace (works well for translation degrees of freedom)
 - How can we handle robots with rotational degrees of freedom?