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Last lecture
 Configuration Space 

 Free-Space and C-Space Obstacles
 Minkowski Sums
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Free-Space and C-Space Obstacle
 How do we know whether a configuration is in 

the free space?

 Computing an explicit representation of the free-
space is very hard in practice? 
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Free-Space and C-Space Obstacle
 How do we know whether a configuration is in the free 

space?

 Computing an explicit representation of the free-space is 
very hard in practice? 

 Solution: Compute the position of the robot at that 
configuration in the workspace. Explicitly check for 
collisions with any obstacle at that position:
 If colliding, the configuration is within C-space obstacle
 Otherwise, it is in the free space

 Performing collision checks is relative simple
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Two geometric primitives in 
configuration space
 CLEAR(q)

Is configuration q collision free 
or not?

 LINK(q, q’) 
Is the straight-line path 

between q and q’ collision-
free?
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Difficulty with classic approaches
 Running time increases exponentially with the 

dimension of the configuration space.
 For a d-dimension grid with 10 grid points on each 

dimension, how many grid cells are there?

 Several variants of the path planning problem 
have been proven to be PSPACE-hard.

10d
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Completeness
  Complete algorithm  Slow

 A complete algorithm finds a path if one exists and 
reports no otherwise.

 Example: Canny’s roadmap method

  Heuristic algorithm  Unreliable
 Example: potential field

  Probabilistic completeness
 Intuition: If there is a solution path, the algorithm will 

find it with high probability.
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Probabilistic Roadmap (PRM): 
multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone
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Probabilistic Roadmap (PRM): 
single query
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Classic multiple-query PRM 
 Probabilistic Roadmaps for Path Planning in High-

Dimensional Configuration Spaces, L. Kavraki et al., 1996.
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Assumptions
 Static obstacles
 Many queries to be processed in the same 

environment
 Examples

 Navigation in static virtual environments
 Robot manipulator arm in a workcell
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Overview
 Precomputation: roadmap construction

 Uniform sampling
 Resampling (expansion)

 Query processing
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Uniform sampling
Input:  geometry of the moving object & obstacles
Output: roadmap G = (V, E)

1: V ← ∅ and E ← ∅.
2:  repeat
3:   q ← a configuration sampled uniformly at random from C.

4:    if CLEAR(q)then
5:   Add q to V.
6:      Nq ← a set of nodes in V that are close to q.

6:      for each q’∈ Nq, in order of increasing d(q,q’)

7:        if LINK(q’,q)then
8:          Add an edge between q and q’ to E.
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Some terminology
 The graph G is called a probabilistic roadmap. 
 The nodes in G are called milestones.
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Difficulty
 Many small connected components
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Resampling (expansion)
 Failure rate 

 Weight

 Resampling probability 
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Resampling (expansion)
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Query processing
 Connect qinit and qgoal to the roadmap

 Start at qinit and qgoal, perform a random walk, and 
try to connect with one of the milestones nearby

 Try multiple times
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Error
 If a path is returned, the answer is always 

correct.
 If no path is found, the answer may or may not 

be correct. We hope it is correct with high 
probability. 
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Why does it work? Intuition
 A small number of milestones almost “cover” 

the entire configuration space. 

 Rigorous definitions and proofs in the next 
lecture.
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Smoothing the path
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Smoothing the path
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Summary
 What probability distribution should be used for 

sampling milestones?
 How should milestones be connected? 
 A path generated by a randomized algorithm is 

usually jerky. How can a path be smoothed?
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Lazy PRM
 Path Planning Using Lazy PRM, R. Bohlin & L. Kavraki, 

2000.
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Precomputation: roadmap construction
 Nodes

 Randomly chosen configurations, which may or may 
not be collision-free

 No call to CLEAR

 Edges
 an edge between two nodes if the corresponding 

configurations are close according to a suitable metric
 no call to LINK
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Query processing: overview
1. Find a shortest path in the roadmap

2. Check whether the nodes and edges in the 
path are collision.

3. If yes, then done. Otherwise, remove the nodes 
or edges in violation. Go to (1). 

We either find a collision-free path, or exhaust all paths in 
the roadmap and declare failure.
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Query processing: details
 Find the shortest path in the roadmap

 A* algorithm
 Dijkstra’s algorithm

 Check whether nodes and edges are collisions 
free
 CLEAR(q)
 LINK(q0, q1)
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Node enhancement
 Select nodes that close the boundary of F
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Sampling a Point Sampling a Point 
Uniformly at RandomUniformly at Random
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Positions
 Unit interval

Pick a random number from [0,1]

 Unit square

 Unit cube

X =

=XX
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Intervals scaled & shifted
 What shall we do?

-2 5

If x is a random number from [0,1], then 7x-2.
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 Sampling
1. Pick x uniform at random from [-1,1]

2. Set 

 Intervals of same widths are sampled with equal 
probabilities

Orientations in 2-D 
(x,y)

x

21 xy −=
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Orientations in 2-D

 Sampling
1. Pick θ uniformly at random from [0, 2π]

2. Set x = cosθ and y = sinθ 

 Circular arcs of same angles are sampled with equal 
probabilities.

(x,y)

θ
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 Both are uniform in some sense.
 For sampling orientations in 2-D, the second 

method is usually more appropriate.

 The definition of uniform sampling depends on 
the task at hand and not on the mathematics.

What is the difference?

x
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 Unit quaternion
(cosξ/2, nxsin ξ /2, nysin ξ /2, nzsinξ /2)  with nx

2
 + ny

2+ nz
2 = 1.

 Sample n and θ  separately

 Sample ξ  from [0, 2π] uniformly at random

Orientations in 3-D

n = (nx, ny, nz)

ξ
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Sampling a point on the unit sphere
 Longitude and latitude
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First attempt
 Choose θ and ϕ uniformly at random from [0, 2π] 

and [0, π], respectively. 
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Better solution
 Spherical patches of 

same areas are sampled 
with equal probabilities.

 Suppose U1 and U2 are 
chosen uniformly at 
random from [0,1].
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Medial Axis based Planning
 Use medial axis based sampling

 Medial axis: similar to internal Voronoi diagram; set of 
points that are equidistant from the obstacle

 Compute approximate Voronoi boundaries using 
discrete computation
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Medial Axis based Planning

 Sample the workspace by taking points on the 
medial axis
 Medial axis of the workspace (works well for 

translation degrees of freedom)
 How can we handle robots with rotational degrees of 

freedom?
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