CS4610/CS5335: Homework 1

Out: $1 / 23 / 15$, Due: $1 / 30 / 15$

Please turn in this homework to Rob Platt in class on the due date.

Figure 1: Used in Problem 1
Problem 1: Write the series of homogeneous transforms associated with each link in the manipulator shown above. Write the transform describing the end effector of the manipulator in the base reference frame (i.e. the $0^{t h}$ reference frame).

Problem 2: (Spong, Problem 2-15) If the coordinate frame A is obtained from the coordinate frame B by a rotation of $\pi / 2$ about the x-axis followed by a rotation of $\pi / 2$ about the fixed y-axis, find the rotation matrix R representing the composite transformation. Sketch the initial and final frames.

Figure 2: Used in Problem 3

Problem 3: (Spong, Problem 2-37) Consider the diagram above. A robot is set up 1 meter from a table. The table top is 1 meter high and 1 meter square. A frame $o_{1} x_{1}, y_{1}, z_{1}$ is fixed to the edge of the table as shown. A cube measuring 20 cm on a side is placed in the center of the table with frame $o_{2} x_{2}, y_{2}, z_{2}$ established at the center of the cube as shown. A camera is situated directly above the center of the block 2 m above the table top with frame $o_{3} x_{3}, y_{3}, z_{3}$ attached as shown. Find the homogeneous transformations relating each of these frames to the base frame $o_{0} x_{0}, y_{0}, z_{0}$. Find the
homogeneous transformation relating the frame $o_{2} x_{2}, y_{2}, z_{2}$ to the camera frame $o_{3} x_{3}, y_{3}, z_{3}$.

Problem 4: (Spong, Problem 2-38) In problem 3, suppose that, after the camera is calibrated, it is rotated 90 degrees about z_{3}. Recompute the above coordinate transformations.

Problem 5: (Spong, Problem 2-39) If the block on the table is rotated 90 about z_{2} and moved so that its center has coordinates $(0, .8, .1)^{T}$ relative to the frame $o_{1} x_{1}, y_{1}, z_{1}$, compute the homogeneous transformation relating the block frame to the camera frame; the block frame to the base frame.

