Reinforcement Learning

Rob Platt
Northeastern University

Some images and slides are used from:
AIMA
CS188 UC Berkeley
Reinforcement Learning (RL)

Previous session discussed sequential decision making problems where the transition model and reward function were known.

In many problems, the model and reward are not known in advance.

Agent must learn how to act through experience with the world.

This session discusses reinforcement learning (RL) where an agent receives a reinforcement signal.
Challenges in RL

Exploration of the world must be balanced with exploitation of knowledge gained through experience.

Reward may be received long after the important choices have been made, so credit must be assigned to earlier decisions.

Must generalize from limited experience.
Conception of agent

Agent \[\rightarrow\text{act}\rightarrow\leftarrow\text{sense}\rightarrow\text{World}]
RL conception of agent

Agent takes actions

Agent perceives states and rewards

Transition model and reward function are initially unknown to the agent! – value iteration assumed knowledge of these two things...
We know the probabilities of moving in each direction when an action is executed.

We know the reward function:

- +1
- -1

Value iteration
Value iteration

We know the probabilities of moving in each direction when an action is executed.

We know the reward function.
Value iteration vs RL

RL still assumes that we have an MDP
RL still assumes that we have an MDP
– we know S and A
– we still want to calculate an optimal policy

BUT:
– we do not know T or R
– we need to figure our T and R by trying out actions and seeing what happens
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Image: A robot on green turf, possibly a Darpa robot, lying on its back.]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Image of a robot walking]

Training

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
Toddler robot uses RL to learn to walk

Tedrake et al., 2005
The next homework assignment!
Model-based RL

1. estimate T, R by averaging experiences
2. solve for policy in MDP (e.g., value iteration)

- a. choose an exploration policy – policy that enables agent to explore all relevant states
- b. follow policy for a while
- c. estimate T and R
Model-based RL

1. estimate T, R by averaging experiences

2. solve for policy in MDP (e.g., value iteration)
 - a. choose an exploration policy – policy that enables agent to explore all relevant states
 - b. follow policy for a while
 - c. estimate T and R

\[
N_{s,a,s'} \equiv \text{Number of times agent reached } s' \text{ by taking } a \text{ from } s
\]
\[
R_{s,a,s'} \equiv \text{Set of rewards obtained when reaching } s' \text{ by taking } a \text{ from } s
\]
\[
T(s, a, s') \approx \frac{N_{s,a,s'}}{\sum_{s'} N_{s,a,s'}}
\]
\[
R(s, a, s') \approx \frac{1}{N_{s,a,s'}} R_{s,a,s'}
\]
Model-based RL

1. estimate T, R by averaging experiences
2. solve for policy in MDP (e.g., value iteration)

a. choose an exploration policy – policy that enables agent to explore all relevant states
b. follow policy for a while

What is a downside of this approach?
Example: Model-based RL

States: a, b, c, d, e
Actions: l, r, u, d

Observations:
1. b, r, c
2. e, u, c
3. c, r, d
4. b, r, a
5. b, r, c
6. e, u, c
7. e, u, c
Example: Model-based RL

States: a,b,c,d,e
Actions: l, r, u, d

Observations:
1. b,r,c
2. e,u,c
3. c,r,d
4. b,r,a
5. b,r,c
6. e,u,c
7. e,u,c

Estimates:
\[P(c|e,u) = 1 \]
\[P(c|b,r) = 0.66 \]
\[P(a|b,r) = 0.33 \]
\[P(d|c,r) = 1 \]
Model-based vs Model-free

Suppose you want to calculate average age in this classroom

Method 1: \[\mathbb{E}(a) = \sum_a P(a) a \]

where: \[P(a) = \frac{\text{num people of age } a}{\text{total num people}} \]

Method 2: \[\mathbb{E}(a) \approx \sum_{i=1}^{n} a_i \]

where: \[a_i \] is the age of a randomly sampled person
Suppose you want to calculate average age in this class room

Method 1: \[\mathbb{E}(a) = \sum_a P(a)a \]

where: \[P(a) = \frac{\text{num people of age } a}{\text{total num people}} \]

Model based (why?)

Method 2: \[\mathbb{E}(a) \approx \sum_{i=1}^{n} a_i \]

where: \(a_i \) is the age of a randomly sampled person

Model free (why?)
Model-free estimate of the value function

Remember this equation?

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V_i(s') \right] \]

Is this model-based or model-free?
Model-free estimate of the value function

Remember this equation?

$$V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V_i(s') \right]$$

Is this model-based or model-free?

How do you make it model-free?
Model-free estimate of the value function

Remember this equation?

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V_i(s') \right] \]

Let's think about this equation first:

\[V^\pi_{i+1}(s) = \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V^\pi_i(s') \right] \]
Model-free estimate of the value function

$$\mathbb{E}(a) = \sum_a P(a) a \quad \Rightarrow \quad \mathbb{E}(a) \approx \sum_{i=1}^n a_i$$

$$V_{\pi_{i+1}}(s) = \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V_{\pi_i}(s') \right]$$
Model-free estimate of the value function

\[\mathbb{E}(a) = \sum_a P(a) a \quad \rightarrow \quad \mathbb{E}(a) \approx \sum_{i=1}^n a_i \]

\[V_{i+1}^\pi(s) = \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V_i^\pi(s') \right] \]

\[V_{i+1}^\pi(s) \approx \frac{1}{n} \sum_{i=1}^n r(s, a) + \gamma V_i^\pi(s') \]
Model-free estimate of the value function

\[V_{i+1}^\pi(s) \approx \frac{1}{n} \sum_{i=1}^{n} r(s, a) + \gamma V_i^\pi(s') \]

How would we use this equation?

– get a bunch of samples of \((s, a, s', r)\)

– for each sample, calculate \(r + \gamma V_i^\pi(s') \)

– average the results...
Weighted moving average

Suppose we have a random variable X and we want to estimate the mean from samples x_1, \ldots, x_k.

After k samples

$$\hat{x}_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

Can show that

$$\hat{x}_k = \hat{x}_{k-1} + \frac{1}{k} (x_k - \hat{x}_{k-1})$$

Can be written

$$\hat{x}_k = \hat{x}_{k-1} + \alpha(k)(x_k - \hat{x}_{k-1})$$

Learning rate $\alpha(k)$ can be functions other than 1, loose k conditions on learning rate to ensure convergence to mean

If learning rate is constant, weight of older samples decay exponentially at the rate $(1 - \alpha)$

Forgets about the past (distant past values were wrong anyway)

Update rule

$$\hat{x} \leftarrow \hat{x} + \alpha(x - \hat{x})$$
Suppose we have a random variable X and we want to estimate the mean from samples x_1, \ldots, x_k.

After k samples:

$$\hat{x}_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

Can show that:

$$\hat{x}_k = \hat{x}_{k-1} + \frac{1}{k} (x_k - \hat{x}_{k-1})$$

Can be written:

$$\hat{x}_k = \hat{x}_{k-1} + \alpha(k)(x_k - \hat{x}_{k-1})$$

Weighted moving average

After several samples...

$$V_{i+1}^\pi(s) \approx \frac{1}{n} \sum_{i=1}^{n} r(s, a) + \gamma V_i^\pi(s')$$

$$\approx V_i^\pi(s) + \alpha [r(s, a) + \gamma V_i^\pi(s') - V_i^\pi(s)]$$

or just drop the subscripts...

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)]$$
Suppose we have a random variable X and we want to estimate the mean from samples x_1, \ldots, x_k.

After k samples,

$$\hat{x}_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

Can show that

$$\hat{x}_k = \hat{x}_{k-1} + \frac{1}{k}(x_k - \hat{x}_{k-1})$$

This is called **TD Value learning**
– thing inside the square brackets is called the “TD error”

$$\sim V_{i+1}^\pi(s) \leftarrow V_i^\pi(s) + \alpha [r(s,a) + \gamma V_i^\pi(s') - V_i^\pi(s)]$$
or just drop the subscripts...

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)]$$
TD Value Learning: example

\[\gamma = 1, \alpha = 0.5\]

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha \left[r + \gamma V^\pi(s') - V^\pi(s) \right]\]
TD Value Learning: example

$\gamma = 1, \alpha = 0.5$

$$V^\pi (s) \leftarrow V^\pi (s) + \alpha [r + \gamma V^\pi (s') - V^\pi (s)]$$
TD Value Learning: example

\(\gamma = 1, \alpha = 0.5 \)

\[
V^\pi(s) \leftarrow V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)]
\]

\[
V^\pi(s) \leftarrow 0 + 0.5 [-2 + 0 - 0]
\]
TD Value Learning: example

\[\gamma = 1, \alpha = 0.5 \]

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)] \]
TD Value Learning: example

\[
\begin{align*}
\gamma &= 1, \alpha = 0.5 \\
V^\pi(s) &\leftarrow V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)] \\
V^\pi(s) &\leftarrow 0 + 0.5 [-2 + 8 - 0]
\end{align*}
\]
What's the problem w/ TD Value Learning?
What's the problem w/ TD Value Learning?

Can't turn the estimated value function into a policy!

This is how we did it when we were using value iteration:

$$\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Why can't we do this now?
What's the problem w/ TD Value Learning?

Can't turn the estimated value function into a policy!

This is how we did it when we were using value iteration:

$$\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$$

Why can't we do this now?

Solution: Use TD value learning to estimate Q^*, not V^*
How do we estimate Q?

\[V(s) \leftarrow \text{Value of being in state } s \text{ and acting optimally} \]

\[Q(s, a) \leftarrow \text{Value of taken action } a \text{ from state } s \text{ and then acting optimally} \]

\[
Q_{i+1}(s, a) = \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma V_i(s') \right]
\]

\[= \sum_{s'} T(s, a, s') \left[r(s, a) + \gamma \max_{a'} Q_i(s', a') \right] \]

Use this equation inside of the value iteration loop we studied last lecture...
Model-free reinforcement learning

Life consists of a sequence of tuples like this: \((s,a,s',r')\)

Use these updates to get an estimate of \(Q(s,a)\)

How?
Model-free reinforcement learning

Here's how we estimated V:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)]$$

So do the same thing for Q:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$
Model-free reinforcement learning

Here's how we estimated V:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha \left[r + \gamma V^\pi(s') - V^\pi(s) \right]$$

So do the same thing for Q:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

This is called Q-Learning. Most famous type of RL.
Model-free reinforcement learning

Here's how we estimated V:

So do the same thing for Q:

Q-values learned using Q-Learning
Q-Learning

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$

Repeat (for each episode):
 Initialize S
 Repeat (for each step of episode):
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Take action A, observe R, S'
 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) - Q(S, A) \right]$
 $S \leftarrow S'$
 until S is terminal
Q-Learning: properties

Q-learning converges to optimal Q-values if:

1. it explores every s, a, s' transition sufficiently often

2. the learning rate approaches zero (eventually)

Key insight: Q-value estimates converge even if experience is obtained using a suboptimal policy.

This is called **off-policy learning**
SARSA

Q-learning
Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$
Repeat (for each episode):
 Initialize S
 Repeat (for each step of episode):
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Take action A, observe R, $S'$$$
 Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) - Q(S, A) \right]$$$
 $S \leftarrow S'$
 until S is terminal

SARSA
Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$
Repeat (for each episode):
 Initialize S
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Repeat (for each step of episode):
 Take action A, observe R, $S'$$$
 Choose A' from S' using policy derived from Q (e.g., ϵ-greedy)$$
 Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma Q(S', A') - Q(S, A) \right]$$$
 $S \leftarrow S'; \ A \leftarrow A'$
 until S is terminal
Q-learning vs SARSA

Which path does SARSA learn?

Which one does q-learning learn?
Q-learning vs SARSA

The diagram illustrates the comparison between Q-learning and SARSA in a specific environment. The top part of the image shows a grid world with labels for the start (S), The Cliff, and the goal (G), indicating a safe path and an optimal path. The bottom part of the image presents a graph showing the sum of rewards during episodes for both algorithms, with Q-learning and SARSA having different trends over the episodes.
Exploration vs exploitation

Think about how we choose actions:

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$

Repeat (for each episode):
 Initialize S
 Repeat (for each step of episode):
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Take action A, observe R, S'
 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$
 $S \leftarrow S'$
 until S is terminal

$$a = \arg \max_a Q(s, a)$$

But: if we only take “greedy” actions, then how do we explore? – if we don't explore new states, then how do we learn anything new?
Exploration vs exploitation

Think about how we choose actions:

- Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$
- Repeat (for each episode):
 - Initialize S
 - Repeat (for each step of episode):
 - Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 - Take action A, receive R,
 - $Q(s, a) = \frac{Q(s, a) + \alpha R}{\beta}$
 - $S \leftarrow \cdot$
 - until S is terminal

But: if we only take “greedy” actions, then how do we explore?
- if we don't explore new states, then how do we learn anything new?
Exploration vs exploitation

Choose a random action ε% of the time.

OW, take the greedy action

Initialize \(Q(s, a), \forall s \in S, a \in A(s) \), arbitrarily, and \(Q(s, a) = 0 \)

Repeat (for each episode):

 Initialize \(S \)

Repeat (for each step of episode):
 Choose \(A \) from \(S \) using policy derived from \(Q \) (e.g., ε-greedy)
 Take action \(A \), observe \(R, S' \)
 \[
 Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
 \]
 \(S \leftarrow S' \)
 until \(S \) is terminal

\[
\alpha = \arg \max_a Q(s, a)
\]

But: if we only take “greedy” actions, then how do we explore?
– if we don't explore new states, then how do we learn anything new?
So far, the policy is distinct for each state – knowing something about this state tells us nothing about what to do in other states.
Function approximation

So far, the policy is distinct for each state – knowing something about this state tells us nothing about what to do in other states.

But, what if you have a large state space?

How should these states generalize?
Solution: describe a state using a vector of features (properties)

Features are functions from states to real numbers (often 0/1) that capture important properties of the state.

Example features:
- Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- $1 / (\text{dist to dot})^2$
- Is Pacman in a tunnel? (0/1)
 …… etc.

Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!
Approximate Q-learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

Q-learning with linear Q-functions:

transition \(= (s, a, r, s') \)

difference \(= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \)

\[Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \quad \text{Exact Q's} \]

\[w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a) \quad \text{Approximate Q's} \]

Intuitive interpretation:

Adjust weights of active features

E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

Formal justification: online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

- \(f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \)
- \(f_{\text{GST}}(s, \text{NORTH}) = 1.0 \)

Action: \(a = \text{NORTH} \)
Reward: \(r = -500 \)

State Transition:
- \(Q(s', \cdot) = 0 \)
- \(Q(s, \text{NORTH}) = +1 \)

Difference: \(-501 \)

Update Weights:
- \(w_{\text{DOT}} \leftarrow 4.0 + \alpha \cdot [-501] \cdot 0.5 \)
- \(w_{\text{GST}} \leftarrow -1.0 + \alpha \cdot [-501] \cdot 1.0 \)

Final Q-Value:
\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]