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(Discrete) Random variables

What is a random variable?

Suppose that the variable a denotes the outcome of a role of a single six-sided die:

a is a random variable this is the domain of a

Another example:

Suppose b denotes whether it is raining or clear outside:



Probability distribution

A probability distribution associates each with a probability of occurrence, 
represented by a probability mass function (pmf).

A probability table is one way to encode the distribution:

All probability distributions must satisfy the following:

1.

2.



Two pmfs over a state space of X={1,2,3,4} 

Example pmfs



  

Writing probabilities

For example:

But, sometimes we will abbreviate this as:



Types of random variables

Propositional or Boolean random variables

- e.g., Cavity (do I have a cavity?)

- Cavity = true is a proposition, also written cavity 

Discrete random variables (finite or infinite)

- e.g., Weather is one of ⟨sunny, rain, cloudy, snow  ⟩
- Weather = rain is a proposition

- Values must be exhaustive and mutually exclusive 

Continuous random variables (bounded or unbounded) 

- e.g., Temp < 22.0 



Continuous random variables

Cumulate distribution function (cdf), F(q)=(X<q) with P(a<X≤b)=F(b)-F(a) 

Probability density function (pdf),                        with   

Express distribution as a parameterized function of value:
- e.g.,  P(X = x) = U[18, 26](x) = uniform density between 18 and 26 

Here P is a density; integrates to 1.

 P(X = 20.5) = 0.125 really means

f (x)  d
dx
F(x) P(a X  b) 

a

b

 f (x)

limdx0 P(20.5  X  20.5 dx) /dx 0.125



Joint probability distributions

Given random variables:

The joint distribution is a probability 
assignment to all combinations:

As with single-variate distributions, joint distributions must 
satisfy:

or:

1.

2.

P(X1  x1  X2  x2  Xn  xn)Sometimes written as:

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72 
correspond to belief prior to arrival of any (new) evidence 



  

Joint probability distributions

Joint distributions are typically written in table form:

T W P(T,W)

Warm snow 0.1

Warm hail 0.3

Cold snow 0.5

Cold hail 0.1



  

Marginalization

Given P(T,W), calculate P(T) or P(W)...

T W P(T,W)

Warm snow 0.1

Warm hail 0.3

Cold snow 0.4

Cold hail 0.2

T P(T)

Warm 0.4

Cold 0.6

W P(W)

snow 0.5

hail 0.5



  

Marginalization

Given P(T,W), calculate P(T) or P(W)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

T P(T)

Warm ?

Cold ?

W P(W)

snow ?

hail ?



Conditional Probabilities

Conditional or posterior probabilities 
- e.g., P(cavity|toothache) = 0.8

- i.e., given that toothache is all I know 

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

- Note: the less specific belief remains valid after more evidence arrives, but is not 

always useful

New evidence may be irrelevant, allowing simplification

- e.g., P(cavity|toothache, redsoxwin)=P(cavity|toothache)=0.8 

This kind of inference, sanctioned by domain knowledge, is crucial



Conditional Probabilities

Conditional or posterior probabilities 
- e.g., P(cavity|toothache) = 0.8

- i.e., given that toothache is all I know 

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

- Note: the less specific belief remains valid after more evidence arrives, but is not 

always useful

New evidence may be irrelevant, allowing simplification

- e.g., P(cavity|toothache, redsoxwin)=P(cavity|toothache)=0.8 

This kind of inference, sanctioned by domain knowledge, is crucial

cavity P(cavity|toothache)

true 0.8

false 0.2

Often written as a conditional probability table:



Conditional Probabilities

Conditional probability:                               (if P(B)>0 )

Example: Medical diagnosis

Product rule: P(A,B) = P(A  B) = P(A|B)P(B) ∧

Marginalization with conditional probabilities:

This formula/rule is called the law of of total probability

Chain rule is derived by successive application of product rule: 
P(X1,...,Xn) = P(X1,...,Xn−1) P(Xn|X1,...,Xn−1)
= P(X1,...,Xn−2) P(Xn−1|X1,...,Xn−2) P(Xn|X1,...,Xn−1) = ...
= Πn

i=1 P(Xi|X1,...,Xi−1)

P(A | B)  P(A,B)

P(B)

P(A)  P
bB
 (A | B b)P(B b)



  

Conditional Probabilities

P(snow|warm) = Probability that it will snow given that it is warm

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow ?

hail ?



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

Where did this formula come from?

W P(W|T=warm)

snow ?

hail ?



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow ?

hail ?



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail ?



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3
How do we solve 
for this?

W P(W|T=warm)

snow 0.6

hail ?



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

W P(W|T=cold)

snow ?

hail ?



  

Conditional distribution

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

W P(W|T=cold)

snow 0.4

hail 0.6



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

Can we avoid explicitly computing this denominator?

Any ideas?



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

W P(W,T=warm)

snow 0.3

hail 0.2

W P(W|T=warm)

snow 0.6

hail 0.4
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:



  

Normalization

T P(T,W=hail)

warm ?

cold ?
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:

T P(T|W=hail)

warm ?

cold ?

T W P(T,W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.2

Cold hail 0.1



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.2

Cold hail 0.1

T P(T,W=hail)

warm 0.4

cold 0.1
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:

T P(T|W=hail)

warm ?

cold ?



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.2

Cold hail 0.1

T P(T,W=hail)

warm 0.4

cold 0.1
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:

T P(T|W=hail)

warm 0.8

cold 0.2

The only purpose of this denominator is to make the 
distribution sum to one.
– we achieve the same thing by scaling.



  

Bayes Rule

Thomas Bayes (1701 – 1761):
– English statistician, philosopher and Presbyterian minister 
– formulated a specific case of the formula above
– his work later published/generalized by Richard Price



  

Bayes Rule

It's easy to derive from the product rule:

Solve for this



  

Using Bayes Rule



  

Using Bayes Rule

It's often easier to estimate thisBut harder to estimate this



  

Bayes Rule Example

meningitis

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

Suppose you have a stiff neck...

stiff neck

What are the chances that you have meningitis?



  

Bayes Rule Example

meningitis

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

Suppose you have a stiff neck...

stiff neck

What are the chances that you have meningitis?

We need a little more information...



  

Bayes Rule Example

Prior probability of meningitis

Prior probability of stiff neck



  

Bayes Rule Example

T W P(T|W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.7

Cold hail 0.6

Given:

W P(W)

snow 0.8

hail 0.2

Calculate P(W|warm):



  

Bayes Rule Example

T W P(T|W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.7

Cold hail 0.6

Given:

W P(W)

snow 0.8

hail 0.2

Calculate P(W|warm):

normalize

=0.25

=0.75



  

Independence

If two variables are independent, then:
or

or



  

Independence

a ba

If two variables are independent, then:
or

or

independent



  

Independence

ba

If two variables are independent, then:
or

or

Not independent



  

Conditional Independence

If two variables a,b are conditionally independent given c, then:

ba

c

Without conditioning on c, a and b are not independent!!!
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