Basic Probability

Robert Platt
Northeastern University
Some images and slides are used from:

1. AIMA
2. Chris Amato

(Discrete) Random variables

What is a random variable?

Suppose that the variable a denotes the outcome of a role of a single six-sided die:

a is a random variable
this is the domain of a

Another example:
Suppose b denotes whether it is raining or clear outside:

$$
b \in\{\text { rain, clear }\}=B
$$

Probability distribution

A probability distribution associates each with a probability of occurrence, represented by a probability mass function (pmf).
A probability table is one way to encode the distribution:

$$
a \in\{1,2,3,4,5,6\}=A \quad b \in\{\text { rain, clear }\}=B
$$

a	$\mathrm{P}(\mathrm{a})$
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

b	$\mathrm{P}(\mathrm{b})$
rain	$1 / 4$
clear	$3 / 4$

All probability distributions must satisfy the following:

1. $\forall a \in A, a \geq 0$
2. $\sum_{a \in A} a=1$

Example pmfs

Two pmfs over a state space of $X=\{1,2,3,4\}$

Writing probabilities

a	$\mathrm{P}(\mathrm{a})$
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

b	$\mathrm{P}(\mathrm{b})$
rain	$1 / 4$
clear	$3 / 4$

For example: $\quad p(a=2)=1 / 6$

$$
p(b=c l e a r)=3 / 4
$$

But, sometimes we will abbreviate this as: $\quad p(2)=1 / 6$

$$
p(\text { clear })=3 / 4
$$

Types of random variables

Propositional or Boolean random variables

- e.g., Cavity (do I have a cavity?)
- Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)

- e.g., Weather is one of 〈sunny, rain, cloudy, snow)
- Weather = rain is a proposition
- Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

- e.g., Temp < 22.0

Continuous random variables

Cumulate distribution function (cdf), $F(q)=(X<q)$ with $P(a<X \leq b)=F(b)-F(a)$
Probability density function (pdf), $f(x)=\frac{d}{d x} F(x)$ with $P(a<X \leq b)=\int_{a}^{b} f(x)$

Express distribution as a parameterized function of value:

- e.g., $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

Here P is a density; integrates to 1.
$P(X=20.5)=0.125$ really means $\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125$

Joint probability distributions

Given random variables: $X_{1}, X_{2}, \ldots, X_{n}$
The joint distribution is a probability
assignment to all combinations: $P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$

$$
\text { or: } \quad P\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Sometimes written as: $P\left(X_{1}=X_{1} \wedge X_{2}=X_{2} \wedge \ldots \wedge X_{n}=X_{n}\right)$
As with single-variate distributions, joint distributions must satisfy:

$$
\begin{aligned}
& \text { 1. } P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0 \\
& \text { 2. } \sum_{x_{1}, \ldots, x_{n}} P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1
\end{aligned}
$$

Prior or unconditional probabilities of propositions e.g., $\mathrm{P}($ Cavity $=$ true $)=0.1$ and $\mathrm{P}($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence

Joint probability distributions

Joint distributions are typically written in table form:

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
Warm	snow	0.1
Warm	hail	0.3
Cold	snow	0.5
Cold	hail	0.1

Marginalization

Given $P(T, W)$, calculate $P(T)$ or $P(W)$...

Marginalization

Given $P(T, W)$, calculate $P(T)$ or $P(W)$...

Conditional Probabilities

Conditional or posterior probabilities

- e.g., P (cavity|toothache) $=0.8$
- i.e., given that toothache is all I know

If we know more, e.g., cavity is also given, then we have P (cavity|toothache, cavity) $=1$

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification

- e.g., P (cavity|toothache, redsoxwin) $=P$ (cavity|toothache) $=0.8$

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probabilities

Conditional or posterior probabilities

- e.g., P (cavity|toothache) $=0.8$
- i.e., given that toothache is all I know

If we know more, e.g., cavity is also give

- Note: the less specific belief rema always useful

Often written as a conditional probability table:

cavity	P(cavity\|toothache)
true	0.8
false	0.2

New evidence may be irrelevant, allowing sitm

- e.g., P (cavity|toothache, redsoxwin) $=P$ (cavity|toothache) $=0.8$

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probabilities

Conditional probability: $P(A \mid B)=\frac{P(A, B)}{P(B)} \quad$ (if $\mathrm{P}(\mathrm{B})>0$)
Example: Medical diagnosis
Product rule: $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \wedge \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$
Marginalization with conditional probabilities:

$$
P(A)=\sum_{b \in B} P(A \mid B=b) P(B=b)
$$

This formula/rule is called the law of of total probability
Chain rule is derived by successive application of product rule:
$P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}, \ldots, X_{n-1}\right) P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$
$=P\left(X_{1}, \ldots, X_{n-2}\right) P\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\ldots$
$=\Pi_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$

Conditional Probabilities

$\mathrm{P}($ snow|warm $)=$ Probability that it will snow given that it is warm

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
Warm	snow	0.3
Warm	hail	0.2
Cold	snow	0.2
Cold	hail	0.3

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t}) \ldots$

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
Warm	snow	0.3
Warm	hail	0.2
Cold	snow	0.2
Cold	hail	0.3

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

			\checkmark	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$
				snow	?
T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$		hail	?
Warm	snow	0.3		hail	?
Warm	hail	0.2	$P(W, t)$		
Cold	snow	0.2	$P(W \mid t)=\frac{P}{P(t)}$		
Cold	hail	0.3	$P(t)$		

Where did this formula come from?

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
Warm	snow	0.3
	$P(W \mid t)=\frac{P(W, t)}{P(t)}$	$?$
		0.2
		0.2
		0.3

$$
P(\text { snow } \mid \text { warm })=\frac{P(\text { warm, snow })}{P(\text { warm })}=\frac{P(\text { warm }, \text { snow })}{P(\text { warm }, \text { hail })+P(\text { warm }, \text { snow })}
$$

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$			
Warm	snow	0.3			
Warm	hail	0.2			
Cold	snow	0.2			
Cold	hail	0.3	$\quad \bullet$	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$
:---:	:---:	:---:			
snow	0.6				
hail	$?$				

$$
\begin{aligned}
P(\text { snow } \mid \text { warm })=\frac{P(\text { warm }, \text { snow })}{P(\text { warm })} & =\frac{P(\text { warm }, \text { snow })}{P(\text { warm }, \text { hail })+P(\text { warm }, \text { snow })} \\
& =\frac{0.3}{0.2+0.3}
\end{aligned}
$$

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$	-	snow	--- -0_{0}
Warm	snow	0.3	$P(W \mid t)=\frac{P(W, t)}{P(t)}$	hail	?
Warm	hail	0.2			-
Cold	snow	0.2		How do we solve for this?	
Cold	hail	0.3			

$$
\begin{aligned}
P(\text { snow } \mid \text { warm })=\frac{P(\text { warm }, \text { snow })}{P(w a r m)} & =\frac{P(\text { warm }, \text { snow })}{P(\text { warm }, \text { hail })+P(\text { warm }, \text { snow })} \\
& =\frac{0.3}{0.2+0.3}
\end{aligned}
$$

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$			
Warm	snow	0.3			
Warm	hail	0.2			
Cold	snow	0.2			
Cold	hail	0.3	$\quad \bullet$	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$
:---:	:---:	:---:			
snow	0.6				
hail	0.4				

$$
\begin{aligned}
P(\text { snow } \mid \text { warm })=\frac{P(\text { warm }, \text { snow })}{P(\text { warm })} & =\frac{P(\text { warm }, \text { snow })}{P(\text { warm }, \text { hail })+P(\text { warm }, \text { snow })} \\
& =\frac{0.3}{0.2+0.3}
\end{aligned}
$$

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

			$P(W \mid t)=\frac{P(W, t)}{P(t)}$	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$
				snow	0.6
T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$		hail	0.4
Warm	snow	0.3			
Warm	hail	0.2			
Cold	snow	0.2			
Cold	hail	0.3			
			-	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ cold $)$
				snow	?
				hail	?

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

			$P(W \mid t)=\frac{P(W, t)}{P(t)}$	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$
				snow	0.6
T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$		hail	0.4
Warm	snow	0.3			
Warm	hail	0.2			
Cold	snow	0.2			
Cold	hail	0.3			
			-	W	$\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ cold $)$
				snow	0.4
				hail	0.6

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
Warm	snow	0.3
Warm	hail	0.2
Cold	snow	0.2
Cold	hail	0.3

$P(W \mid t)=\underset{\sim}{P(W, t)} \quad$| W | $\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$ |
| :---: | :---: |
| snow | 0.6 |
| hail | 0.4 |

Can we avoid explicitly computing this denominator?

$$
P(\text { snow } \mid \text { warm })=\frac{1 \text { P(warm, snow })}{P(\text { warm, hail })+\text { P(warm, snow })}
$$

Any ideas?

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
Warm	snow	0.3
Warm	hail	0.2
Cold	snow	0.2
Cold	hail	0.3

$P(W \mid t)=\frac{P(W, t)}{P(t)} \bullet$| W | $\mathrm{P}(\mathrm{W} \mid \mathrm{T}=$ warm $)$ |
| :---: | :---: |
| snow | 0.6 |
| hail | 0.4 |

Two steps:

1. Copy entries

W	$\mathrm{P}(\mathrm{W}, \mathrm{T}=$ warn $)$
snow	0.3
hail	0.2

2. Scale them up so that entries sum to 1
:---:
hail

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$			
Warm	snow	0.3			
Warm	hail	0.4			
Cold	snow	0.2			
Cold	hail	0.1	Two steps:		
	T	$\mathrm{P}(\mathrm{T}, \mathrm{W}=$ hail $)$		T	$P(T \mid W=$ hail $)$
	warm	?		warm	?
	cold	?	that entries sum to 1	cold	?

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$			
Warm	snow	0.3			
Warm	hail	0.4			
Cold	snow	0.2			
Cold	hail	0.1	Two steps:		
	T	$\mathrm{P}(\mathrm{T}, \mathrm{W}=$ hail $)$		T	$P(T \mid W=$ hail $)$
	warm	0.4		warm	?
	cold	0.1	that entries sum to 1	cold	?

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$			
Warm	snow	0.3			
Warm	hail	0.4			
Cold	snow	0.2			
Cold	hail	0.1	Two steps:		
	T	$\mathrm{P}(\mathrm{T}, \mathrm{W}=$ hail $)$		T	$\mathrm{P}(\mathrm{T} \mid \mathrm{W}=$ hail $)$
	warm	0.4	\rightarrow	warm	0.8
	cold	0.1	that entries sum to 1	cold	0.2

$$
P(W \mid t)=\frac{P(W, t)}{P(t)}
$$

The only purpose of this denominator is to make the distribution sum to one.

- we achieve the same thing by scaling.

Bayes Rule

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

Thomas Bayes (1701-1761):

- English statistician, philosopher and Presbyterian minister
- formulated a specific case of the formula above
- his work later published/generalized by Richard Price

Bayes Rule

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

It's easy to derive from the product rule:

$$
\begin{gathered}
P(a, b)=P(b \mid a) P(a)=\underbrace{P(a \mid b) P(b)}_{\Uparrow} \\
\Uparrow
\end{gathered}
$$

Solve for this

Using Bayes Rule

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

$$
P(\text { cause } \mid e f f e c t)=\frac{P(e f f e c t \mid \text { cause }) P(\text { cause })}{P(e f f e c t)}
$$

Using Bayes Rule

$$
\begin{aligned}
& P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)} \\
& P(\text { cause } \mid \text { effect })=\frac{P(e f f e c t \mid \text { cause }) P(c a u s e)}{P(e f f e c t)}
\end{aligned}
$$

It's often easier to estimate this

Bayes Rule Example

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(e f f e c t)}
$$

Suppose you have a stiff neck...
Suppose there is a 70% chance of meningitis if you have a stiff neck:

$$
\text { stiff neck } \quad \text { meningitis }
$$

What are the chances that you have meningitis?

Bayes Rule Example

$$
P(\text { cause } \mid e f f e c t)=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

Suppose you have a stiff neck...
Suppose there is a 70% chance of meningitis if you have a stiff neck:

$$
\text { stiff neck } \quad P(s \mid m)=0.7
$$

What are the chances that you have meningitis?

We need a little more information...

Bayes Rule Example

$$
\begin{aligned}
& P(\text { cause } \mid e f f e c t)=\frac{P(e f f e c t \mid c a u s e) P(c a u s e)}{P(e f f e c t)} \\
& P(s \mid m)=0.7 \\
& P(s)=0.01 \\
& P(m)=\frac{1}{50000} \quad \text { Prior probability of stiff neck } \\
& P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.7 \times \frac{1}{50000}}{0.01}=0.0014
\end{aligned}
$$

Bayes Rule Example

Given:

W	$\mathrm{P}(\mathrm{W})$
snow	0.8
hail	0.2

T	W	$\mathrm{P}(\mathrm{T} \mid \mathrm{W})$
Warm	snow	0.3
Warm	hail	0.4
Cold	snow	0.7
Cold	hail	0.6

Calculate $\mathrm{P}(\mathrm{W} \mid$ warm $)$:
$P(W \mid w a r m)=\frac{P(w a r m \mid W) P(W)}{P(w a r m)}$

Bayes Rule Example

Given:

W	$\mathrm{P}(\mathrm{W})$
snow	0.8
hail	0.2

T	W	$\mathrm{P}(\mathrm{T} \mid \mathrm{W})$
Warm	snow	0.3
Warm	hail	0.4
Cold	snow	0.7
Cold	hail	0.6

Calculate $\mathrm{P}(\mathrm{W} \mid$ warm $)$:

$$
\begin{aligned}
P(W \mid \text { warm }) & =\frac{P(w a r m \mid W) P(W)}{P(w a r m)} \\
P(\text { hail } \mid \text { warm }) & =\frac{0.4 \times 0.2}{P(w a r m)}=\frac{0.08}{P(\text { warm })}=0.25 \\
P(\text { snow } \mid \text { warm }) & =\frac{0.3 \times 0.8}{P(\text { warm })}=\frac{0.24}{P(\text { warm })}
\end{aligned}
$$

Independence

If two variables are independent, then: $\quad P(a, b)=P(a) P(b)$

$$
\begin{gathered}
\stackrel{\text { or }}{P(a)}=P(a \mid b) \\
\text { or } \\
P(b)=P(b \mid a)
\end{gathered}
$$

Independence

If two variables are independent, then: $\quad P(a, b)=P(a) P(b)$

$$
\begin{gathered}
\text { or } \\
P(a)^{\text {or }}=P(a \mid b) \\
P(b)=P(b \mid a)
\end{gathered}
$$

independent

Independence

If two variables are independent, then: $\quad P(a, b)=P(a) P(b)$

$$
\begin{gathered}
\text { or } \\
P(a)^{\text {or }}=P(a \mid b) \\
P(b)=P(b \mid a)
\end{gathered}
$$

Not independent

Conditional Independence

If two variables a, b are conditionally independent given c, then:

$$
P(a, b \mid c)=P(a \mid c) P(b \mid c)
$$

Without conditioning on c, a and b are not independent!!!

