
MACHINE LEARNING
Slide adapted from learning from data book and course, and 
Berkeley cs188 by Dan Klein, and Pieter Abbeel 



Machine Learning ??
• Learning from data
• Tasks:

• Prediction
• Classification
• Recognition

• Focus on Supervised Learning only
• Classification: Naïve Bayes
• Regression: Linear Regression



Example: Digit Recognition

• Input: images/ pixel grids
• Output: a digit 0-9
• Setup:

• Get a large collection of example images, each label with a digit
• Note: someone has to hand label all this data
• Want to learn to predict labels of new, future digit images



Other classification Tasks

• Classification: given inputs x, predict labels (classes)  y
• Examples:

• Spam detection (input: document/email, classes: spam or not)
• Medical diagnosis (input: symptoms, classes: diseases)
• Automatic essay grading (input: document, classes: grades)
• Movie rating (input: a movie, classes: rating)
• Credit Approval (input: user profile, classes: accept/reject)
• … many more



The essence of machine learning

• The essence of machine learning:
• A pattern exists
• We cannot pin it down mathematically
• We have data on it

• A pattern exists. We don’t know it. We have data to learn it.
• Learning from data to get an information that can make 
prediction



Credit Approval Classification
• Applicant information:

• Approve credit?

Age 23 years

Gender male

Annual salary $30,000

Years in residence 1 year

Years in job 1 year

Current debt $15,000

… …



Credit Approval Classification

• There is no credit approval formula
• Banks have a lots of data

• Customer information: checking status, employment, etc.
• Whether or not they defaulted on their credit (good or bad).



Components of learning

• Formalization:
• Input: x (customer application)
• Output: y (good/bad customer?)
• Target function: (ideal credit approval formula)
• Data: (x1, y1), (x2, y2), …, (xn, yn) (historical records)

• Hypothesis:                  (formula/classifier to be used)



Learning 
Algorithm

A

Unknown Target Function
 

Training 
Examples

(x1, y1), …, (xn, yn)

Hypothesis Set
 

Final 
Hypothesis

 

( Ideal credit approval function )

(historical records of 
credit customer)

(set of candidate formulas)

(final credit approval formula)



Learning 
Algorithm

A

Unknown Target Function
 

Training 
Examples

(x1, y1), …, (xn, yn)

Hypothesis Set
 

Final 
Hypothesis

 

( Ideal credit approval function )

(historical records of 
credit customer)

(set of candidate formulas)

(final credit approval formula)

Solution Components



Learning 
Algorithm

A

Unknown Target Function
 

Training 
Examples

(x1, y1), …, (xn, yn)

Hypothesis Set
 

Final 
Hypothesis

 

ERROR
MEASURE

Unknown Input 
Distribution

 

x1,x2, …, xn
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Model-Based Classification

• Model-Based approach
• Build a model (e.g. Bayes’ net) where both the label and features are 

random variables
• Instantiate any observed features
• Query for the distribution of the label conditioned on the features

• Challenges (solution components)
• How to answer the query
• How should we learn its parameters?
• What structure should the BN have?



Naïve Bayes for Digits

• Naïve Bayes: Assume all features are independent effects of 
the label

• In other word: features are conditional independent given the 
class/label

• Simple digit recognition version:
• One feature (variable) Fij for each grid position <i,j>
• Feature vales are on/off, based on whether intensity is more or less than 

0.5 in underlying image
• Each input maps to feature vector, e.g.
•  -> < F0,0 = 0, F0,1 =0 , …, F15,15 =0>

• Naïve Bayes model:

Y

F1 FnF2



General Naïve Bayes
• A general Naïve Bayes Model:

•  

• We only have to specify how each feature depends on the class
• Total number of parameters is linear in n
• Model is very simplistic, but often work anyway.

Y

F1 FnF2

|Y| parameters

|Y| x |F|n values |Y| x |F|n values



Inference for Naïve Bayes
• Goal: compute posterior distribution over label variable Y

• Step 1: get joint probability of label and evidence for each label

• Step 2: sum to get probability of evidence
• Step 3: normalize by dividing Step 1 by Step 2

+



General Naïve Bayes

• What do we need in order to use Naïve Bayes?

• Inference method (we just saw this part)
• Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
• Use standard inference to compute P(Y|F1…Fn)
• Nothing new here

• Estimates of local conditional probability tables
• P(Y), the prior over labels
• P(Fi|Y) for each feature (evidence variable)
• These probabilities are collectively called the parameters of the model and denoted by 
• Up until now, we assumed these appeared by magic, but…
• …they typically come from training data counts



Example: Conditional Probabilities

1 0.1

2 0.1

3 0.1

4 0.1

5 0.1

6 0.1

7 0.1

8 0.1

9 0.1

0 0.1

1 0.01

2 0.05

3 0.05

4 0.30

5 0.80

6 0.90

7 0.05

8 0.60

9 0.50

0 0.80

1 0.05

2 0.01

3 0.90

4 0.80

5 0.90

6 0.90

7 0.25

8 0.85

9 0.60

0 0.80



Parameter Estimation
• Estimating the distribution of a random variable (CPTs)
• Elicitation: ask a human (why is this hard?)
• Empirically: use training data (learning!)

• E.g.: for each outcome x, look at the empirical rate of that value:

• This is the estimate that maximizes the likelihood of the data

• Relative frequencies are the maximum likelihood estimate

r r b



Unseen Events and Laplace Smoothing
• What happen if you’ve never seen an event or feature for a given class?
• Laplace’s estimate:

• Pretend you saw every outcome once more than you actually did

r r b

|X| = #class



Summary 
• Bayes rule lets us do diagnostic queries with causal probabilities

• The naïve Bayes assumption takes all features to be independent given the 
class label

• We can build classifiers out of a naïve Bayes model using training data

• Smoothing estimates is important in real systems



Input representation and features

• ‘raw’ input x = < F0,0 = 0, F0,1 =0 , …, F15,15 =0>

• ‘raw’ input x = (x0, x1, x2, …, x256) 

• Features: Extract useful information, e.g.,
• Before: Feature vales are on/off, based on whether intensity 

is more or less than 0.5 in underlying image
• Intensity and symmetry x = (x0, x1, x2)



Illustration of features



Linear Regression



Credit Approval Again
• Classification: Credit Approval (yes/no)
• Regression: Credit line (dollar amount)

• Input x =

• Idea: Assign weight to each attribute/feature based on how important it is. 
• Linear regression output: 

Age 23 years

Annual salary $30,000

Years in job 1 year

Current depth $15,000

… …



How to measure the error
• How well does  approximate ?
• In classification, count the number of misclassified.
• In linear regression, we use squared error 2

• In-sample error:



Illustration of linear regression



The expression for Ein



Minimizing Ein



The linear regression algorithm



Linear regression for classification

•  



Linear regression boundary



Overfitting

• Happen when a classifier fits the training data too tightly and 
results in a lot of error when try to predict outside data. 

• In other word, fitting the data more than is warranted.
• Overfitting is a general problem because

• There are noises in data. Try to fit noises is not a good idea
• The true model (f) is very complex and our training data cannot really 

represent it well.







Training and Testing
• Divided data set into two sets:

• Training set
• Test set
• (sometime there will be one more set called Held out set for tuning parameters

• Experimentation cycle
• Learning parameters (e.g. model probabilities or weights) on training set 
• Compute accuracy of test set
• Very important: never “peek” at the test set and never let test set influence your learning.

• Evaluation
• Accuracy or Error from the training set (out-of-sample error)



Resource:

• Learning from data 
• http://work.caltech.edu/telecourse.html 

• Andrew Ng Machine Learning
• https://www.coursera.org/learn/machine-learning
• https://www.youtube.com/watch?v=UzxYlbK2c7E&list=PLA89DCFA6ADACE599 

• In-depth introduction to machine learning in 15 hours of expert videos
• https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-exper

t-videos/
• Python ML library: http://scikit-learn.org/stable/ 
• WekaMOOC : https://weka.waikato.ac.nz/explorer
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