MACHINE LEARNING

Slide adapted from *learning from data* book and course, and Berkeley cs188 by Dan Klein, and Pieter Abbeel

Machine Learning ??

- Learning from data
- Tasks:
 - Prediction
 - Classification
 - Recognition
- Focus on Supervised Learning only
- Classification: Naïve Bayes
- Regression: Linear Regression

Example: Digit Recognition

- Input: images/ pixel grids
- Output: a digit 0-9
- Setup:
 - Get a large collection of example images, each label with a digit
 - Note: someone has to hand label all this data
 - Want to learn to predict labels of new, future digit images

Other classification Tasks

- Classification: given inputs x, predict labels (classes) y
- Examples:
 - Spam detection (input: document/email, classes: spam or not)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grading (input: document, classes: grades)
 - Movie rating (input: a movie, classes: rating)
 - Credit Approval (input: user profile, classes: accept/reject)
 - ... many more

The essence of machine learning

- The essence of machine learning:
 - A pattern exists
 - We cannot pin it down mathematically
 - We have data on it
- A pattern exists. We don't know it. We have data to learn it.
- Learning from data to get an information that can make prediction

Credit Approval Classification

• Applicant information:

Age	23 years		
Gender	male		
Annual salary	\$30,000		
Years in residence	1 year		
Years in job	1 year		
Current debt	\$15,000		

• Approve credit?

Credit Approval Classification

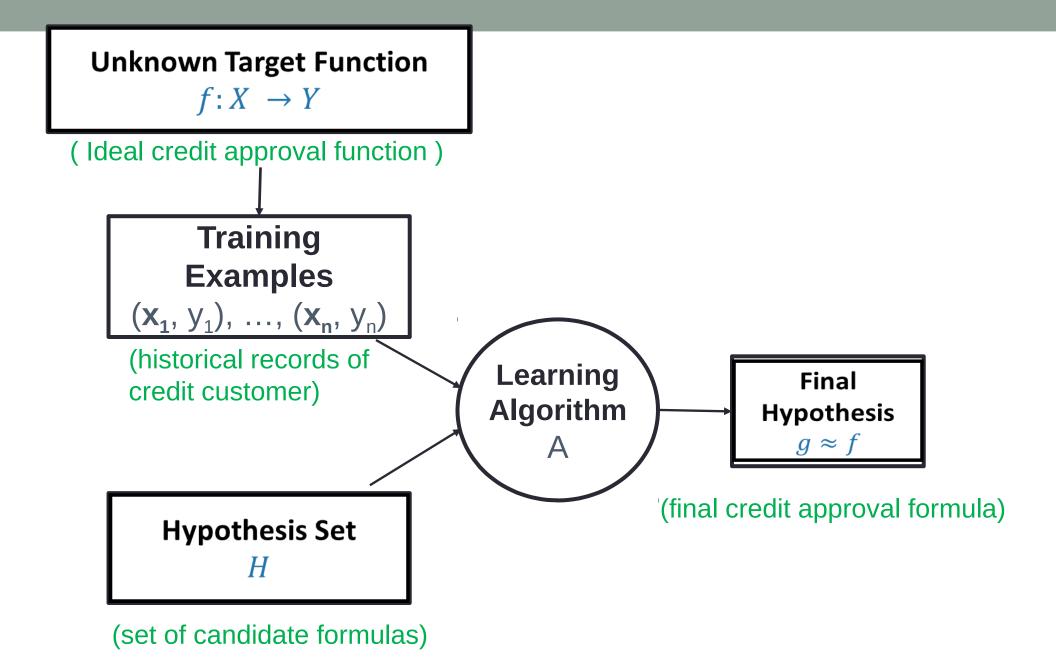
- There is no credit approval formula
- Banks have a lots of data
 - Customer information: checking status, employment, etc.
 - Whether or not they defaulted on their credit (good or bad).

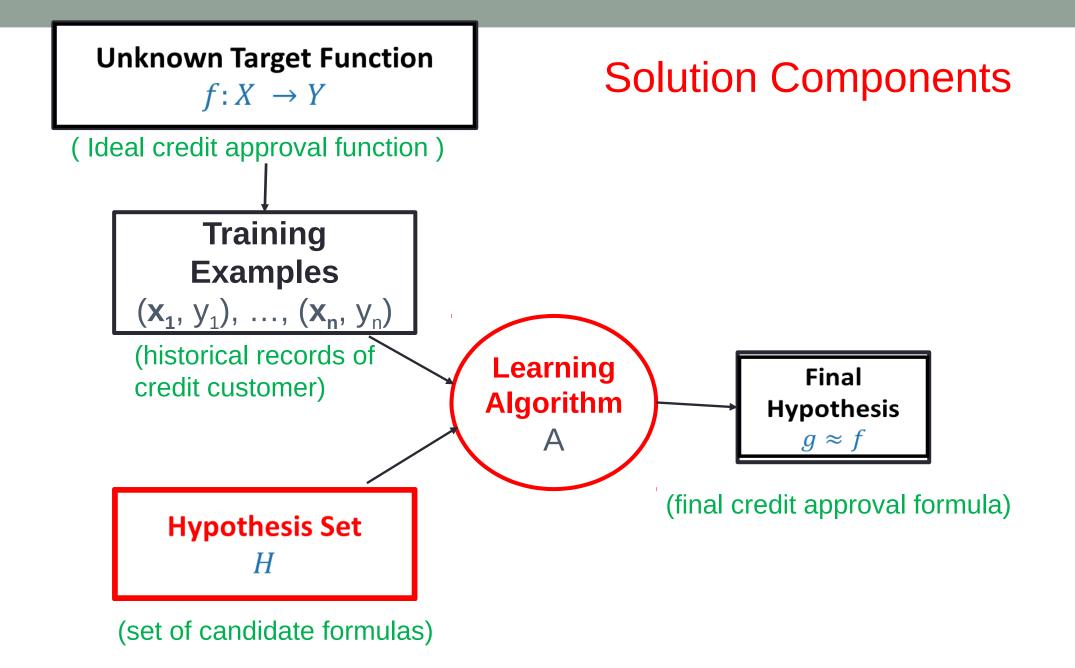
Relati	ion: german_credit								
No.	checking_status Nominal	duration Numeric	credit_history Nominal	purpose Nominal	credit_amount Numeric	savings_status Nominal	employment Nominal	installment_commitment Numeric	personal_status Nominal
1	(0	6.0	critical/other exi	radio/tv	1169.0	no known savi)=7	4.0	male single
2	0(=X(200	48.0	existing paid	radio/tv	5951.0	(100	1(=X(4	2.0	female div/dep
3	no checking	12.0	critical/other exi	education	2096.0	(100	4(=X(7	2.0	male single
4	(0	42.0	existing paid	furnitu	7882.0	(100	4(=X(7	2.0	male single
5	(0	24.0	delayed previously	new car	4870.0	(100	1(=X(4	3.0	male single
6	no checking	<mark>36.0</mark>	existing paid	education	9055.0	no <mark>known</mark> savi	1(=X(4	2.0	male single

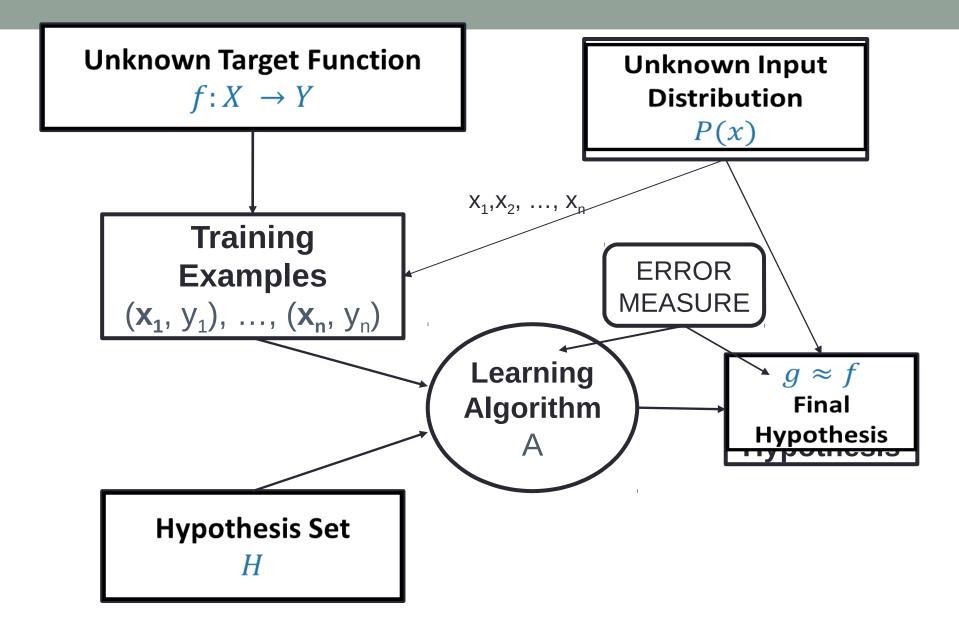
Components of learning

• Formalization:

- Input: **x** (customer application)
- Output: y (good/bad customer?)
- Target function: (ideal credit approval formula)
- Data: $(\mathbf{x_1}, \mathbf{y_1}), (\mathbf{x_2}, \mathbf{y_2}), \dots, (\mathbf{x_n}, \mathbf{y_n})$ (historical records)
- Hypothesis: $g: X \to Y$ (formula/classifier to be used)







The general supervised learning problem

Model-Based Classification

- Model-Based approach
 - Build a model (e.g. Bayes' net) where both the label and features are random variables
 - Instantiate any observed features
 - Query for the distribution of the label conditioned on the features
- Challenges (solution components)
 - How to answer the query
 - How should we learn its parameters?
 - What structure should the BN have?

Naïve Bayes for Digits

- Naïve Bayes: Assume all features are independent effects of the label
- In other word: features are conditional independent given the class/label
- Simple digit recognition version:
 - One feature (variable) F_{ij} for each grid position <i,j>
 - Feature vales are on/off, based on whether intensity is more or less than 0.5 in underlying image

 F_2

F₁

• Each input maps to feature vector, e.g.

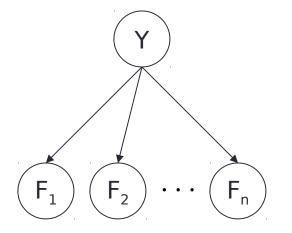
 $< F_{0,0} = 0, F_{0,1} = 0, \dots, F_{15,15} = 0 >$

• Naïve Bayes model: $P(Y|F_{0,0} \dots F_{15,15}) \propto P(Y) \prod_{i=1}^{n} P(F_{i,j}|Y)$

General Naïve Bayes

• A general Naïve Bayes Model:

• |Y| parameters $P(Y, F_1 \dots F_n) = P(Y) \prod_i P(F_i|Y)$ $|Y| \times |F|^n \text{ values}$ $|Y| \times |F|^n \text{ values}$



- We only have to specify how each feature depends on the class
- Total number of parameters is linear in n
- Model is very simplistic, but often work anyway.

Inference for Naïve Bayes

- Goal: compute posterior distribution over label variable Y
 - Step 1: get joint probability of label and evidence for each label

$$P(Y, f_1 \dots f_n) = \begin{bmatrix} P(y_1, f_1 \dots f_n) \\ P(y_2, f_1 \dots f_n) \\ \vdots \\ P(y_k, f_1 \dots f_n) \end{bmatrix} \bigoplus \begin{bmatrix} P(y_1) \prod_i P(f_i | y_1) \\ P(y_2) \prod_i P(f_i | y_2) \\ \vdots \\ P(y_k) \prod_i P(f_i | y_k) \end{bmatrix} \\ P(f_1 \dots f_n) + P(f_1 \dots f_n) = P(f_1 \dots f_n) + P(f_1 \dots f_n)$$

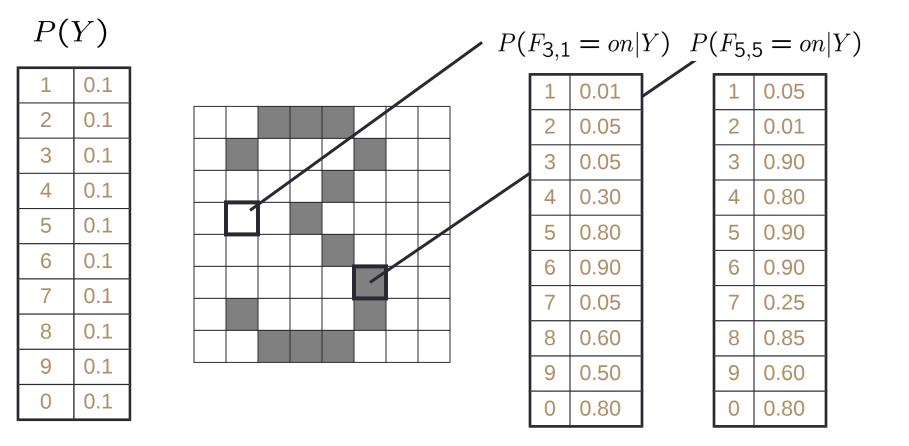
 $P(Y|f_1 \dots f_n)$

- Step 2: sum to get probability of evidence
- Step 3: normalize by dividing Step 1 by Step 2

General Naïve Bayes

- What do we need in order to use Naïve Bayes?
 - Inference method (we just saw this part)
 - Start with a bunch of probabilities: P(Y) and the $P(F_i|Y)$ tables
 - Use standard inference to compute $P(Y|F_1...F_n)$
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - $P(F_i|Y)$ for each feature (evidence variable)
 - These probabilities are collectively called the *parameters* of the model and denoted by θ
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data counts

Example: Conditional Probabilities



Parameter Estimation

- Estimating the distribution of a random variable (CPTs)
- Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the empirical rate of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

r r b $P_{ML}(r) = 2/3$

This is the estimate that maximizes the likelihood of the data

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

Relative frequencies are the maximum likelihood estimate

Unseen Events and Laplace Smoothing

- What happen if you've never seen an event or feature for a given class?
- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$

$$= \frac{c(x) + 1}{N + |X|}$$

$$P_{ML}(X) =$$

$$|X| = \#$$
class
$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

$$P_{LAP}(X) =$$

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems

Input representation and features

- 'raw' input $x = \langle F_{0,0} = 0, F_{0,1} = 0, ..., F_{15,15} = 0 \rangle$
- 'raw' input $x = (x_0, x_1, x_2, ..., x_{256})$
- Features: Extract useful information, e.g.,
 - Before: Feature vales are on/off, based on whether intensity is more or less than 0.5 in underlying image
 - Intensity and symmetry $x = (x_0, x_1, x_2)$

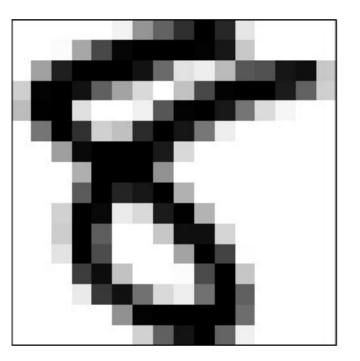
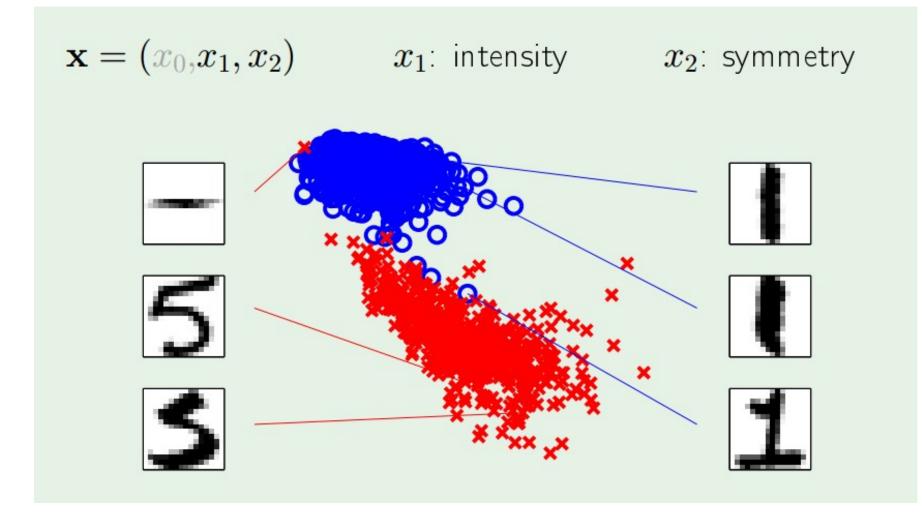


Illustration of features



Linear Regression

Credit Approval Again

- Classification: Credit Approval (yes/no)
- Regression: Credit line (dollar amount)

Age	23 years		
Annual salary	\$30,000		
Years in job	1 year		
Current depth	\$15,000		

• Input x =

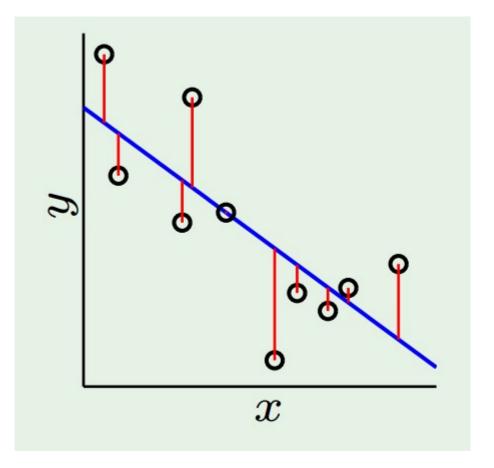
- Idea: Assign weight to each attribute/feature based on how important it is.
- Linear regression output:

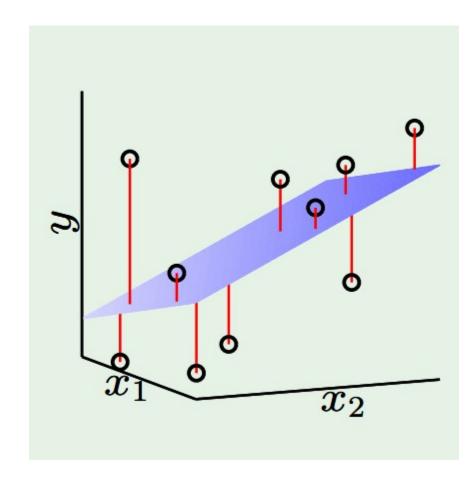
How to measure the error

- How well does approximate ?
- In classification, count the number of misclassified.
- In linear regression, we use squared error ²
- In-sample error:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

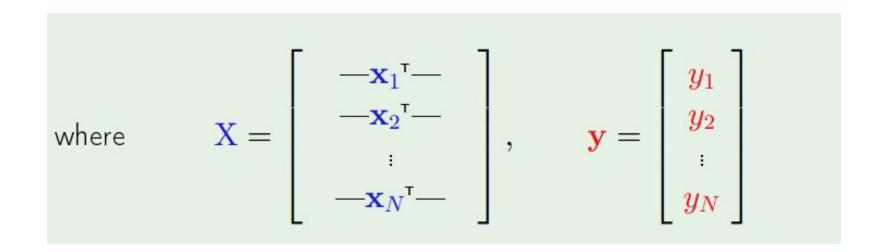
Illustration of linear regression





The expression for E_{in}

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n - \mathbf{y}_n)^2$$
$$= \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$



Minimizing E_{in}

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

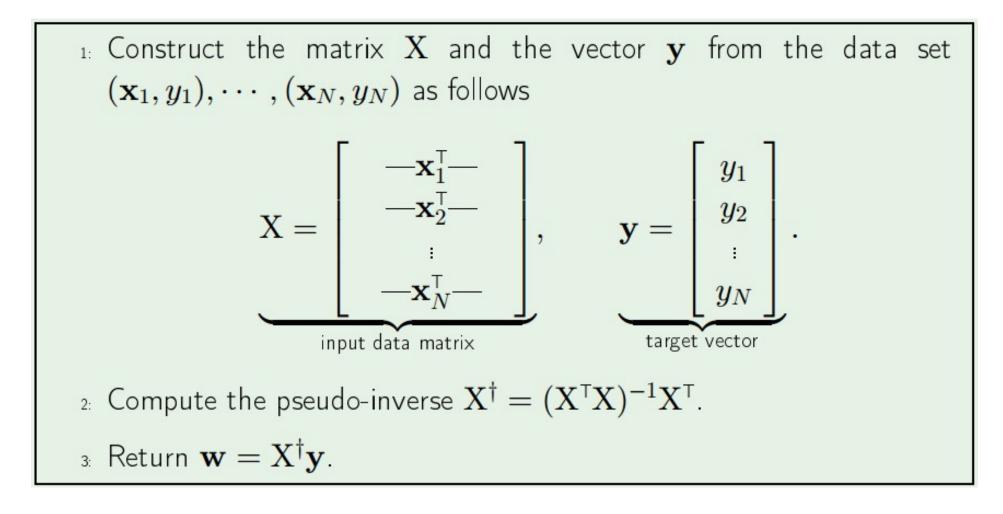
$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{2}{N} \mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{0}$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\mathbf{w} = \mathrm{X}^\dagger \mathbf{y}$$
 where $\mathrm{X}^\dagger = (\mathrm{X}^\intercal \mathrm{X})^{-1} \mathrm{X}^\intercal$

 X^{\dagger} is the 'pseudo-inverse' of X

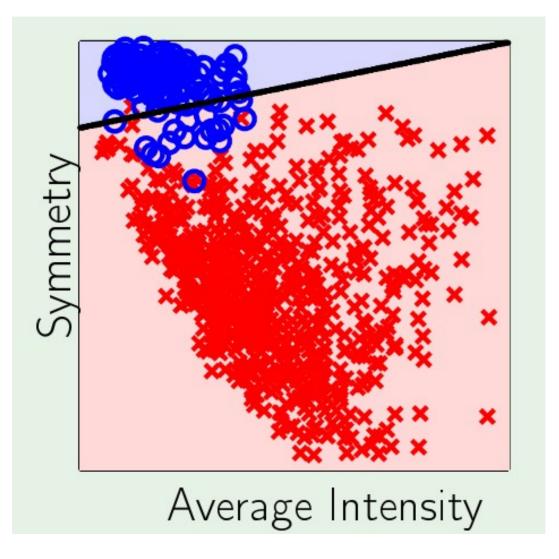
The linear regression algorithm



Linear regression for classification

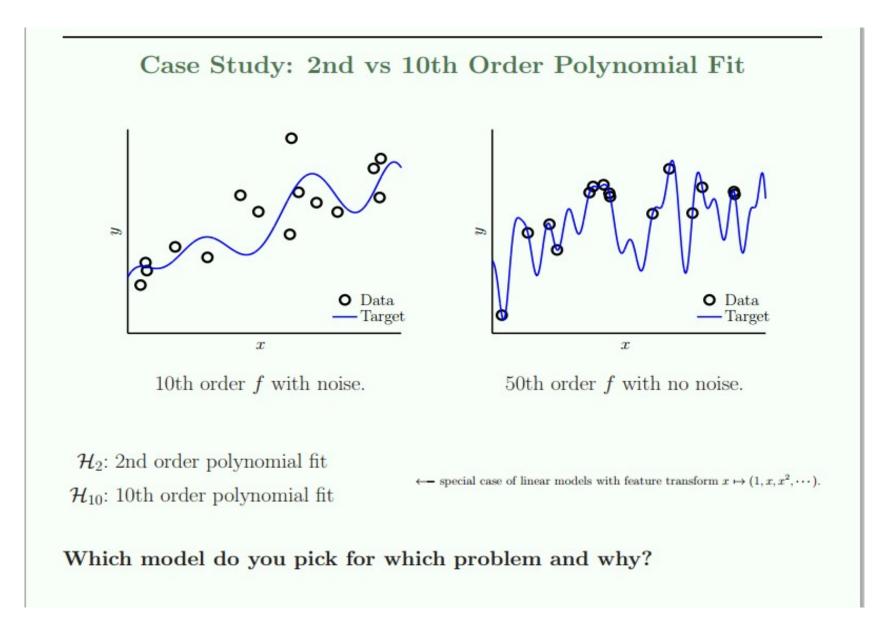
- Linear regression learns a real-valued function $y = f(x) \epsilon R$
- Binary-valued functions are also real-valued! $\pm 1 \epsilon R$
- Use linear regression to get **w** where $w^T x_n \approx y_n = \pm 1$
- In this case, sign($w^T x_n$) is likely to agree with $y_n = \pm 1$

Linear regression boundary

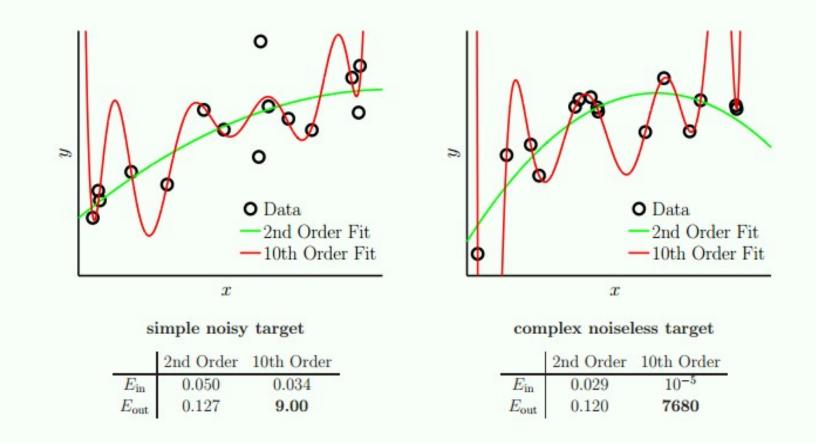


Overfitting

- Happen when a classifier fits the training data too tightly and results in a lot of error when try to predict outside data.
- In other word, fitting the data more than is warranted.
- Overfitting is a general problem because
 - There are noises in data. Try to fit noises is not a good idea
 - The true model (f) is very complex and our training data cannot really represent it well.



Case Study: 2nd vs 10th Order Polynomial Fit



Go figure:

Simpler \mathcal{H} is better even for the more complex target with no noise.

Training and Testing

- Divided data set into two sets:
 - Training set
 - Test set
 - (sometime there will be one more set called Held out set for tuning parameters
- Experimentation cycle
 - Learning parameters (e.g. model probabilities or weights) on training set
 - Compute accuracy of test set
 - Very important: never "peek" at the test set and never let test set influence your learning.
- Evaluation
 - Accuracy or Error from the training set (out-of-sample error)

Resource:

- Learning from data
 - http://work.caltech.edu/telecourse.html
- Andrew Ng Machine Learning
 - <u>https://www.coursera.org/learn/machine-learning</u>
 - <u>https://www.youtube.com/watch?v=UzxYlbK2c7E&list=PLA89DCFA6ADACE599</u>
- In-depth introduction to machine learning in 15 hours of expert videos
 - <u>https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-exper</u> <u>t-videos/</u>
- Python ML library: <u>http://scikit-learn.org/stable/</u>
- WekaMOOC : <u>https://weka.waikato.ac.nz/explorer</u>