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Markov Models

We have already seen that an MDP provides a useful framework 
for modeling stochastic control problems.

Markov Models: model any kind of temporally dynamic system.



 Conditional probability

 Product rule

 Chain rule 

 X, Y independent if and only if:

 X and Y are conditionally independent given Z if and only if:

Probability recap



  

Probability again: Independence

Two random variables, x and y, are independent when:

The outcomes of two different coin flips are 
usually independent of each other



  

Probability again: Independence

If:

Then:

Why?
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Example: Independence

winter

snow 0.1

!snow 0.3

!winter

0.1

0.5
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Example: Independence

winter

snow 0.1

!snow 0.3

!winter

0.1

0.5

Are snow and winter independent variables?

P(snow) = 0.2

P(winter) = 0.4



  

Example: Independence

winter

snow 0.1

!snow 0.3

!winter

0.1

0.5

Are snow and winter independent variables?

P(snow) = 0.2

P(winter) = 0.4

What would the distribution look like if snow, winter were independent?



  

Conditional independence

Independence:

Conditional independence:

Equivalent statements of conditional independence:



  

Conditional independence: example

cavity

toothache catch

P(toothache, catch | cavity) = P(toothache | cavity) P(catch | cavity)

Toothache and catch are conditionally independent given cavity
– this is the “common cause” scenario covered in Bayes Nets...



  

Examples of conditional independence

What are the conditional independence relationships in the following?

– traffic, raining, late for work
– snow, cloudy, crash
– fire, smoke, alarm



  

Markov Processes

transitions

State at time=1
State at time=2

Markov model can be used to model any sequential time process
– the weather
– traffic
– stock market
– news cycle
...



  

Markov Processes

transitions

State at time=1
State at time=2

Since this is a Markov process, we assume transitions are Markov:

Markov assumption:

Process model:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:

Can we simplify this expression?



  

Markov Processes

How do we calculate:
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Markov Processes

How do we calculate:

In general:



  

Markov Processes

How do we calculate:

In general:

Process model



  

Markov Processes: example

X_{t-1} X_t

sun sun

sun cloudy

Two states: cloudy, sunny

X_t

0.8

0.2

cloudy sun

cloudy cloudy

0.3

0.7

sun cloudy 0.70.8

0.2

0.3



  

Simulating dynamics forward

Joint distribution:

But, suppose we want to predict the state at time T, given a prior 
distribution at time 1?

...



  

Simulating dynamics forward

Suppose is it sunny on mon...

Prob sunny tues

Prob sunny weds

Prob sunny thurs

Prob sunny fri



  

Simulating dynamics forward

Suppose is it cloudy on mon...

Prob sunny tues

Prob sunny weds

Prob sunny thurs

Prob sunny fri



  

Simulating dynamics forward

Suppose is it cloudy on mon...

Prob sunny tues

Prob sunny weds

Prob sunny thurs

Prob sunny fri
Converge to same distribution regardless of starting point

– called the “stationary distribution”



  

An aside: the stationary distribution

How might you calculate the stationary distribution?

Let:

Then:

Stationary distribution is the value for p such that:



  

An aside: the stationary distribution

How might you calculate the stationary distribution?

Let:

Then:

Stationary distribution is the value for p such that:

How calculate p that satisfies this eqn?



  

Hidden Markov Models (HMMs)

Hidden Markov Models:

– extension of the Markov model
– state is assumed to be “hidden”



  

Hidden Markov Models (HMMs)

State,      , is assumed to be unobserved

However, you get to make one observation,      , on each 
timestep.

Called an “emission”

Examples:
– speech to text; tracking in computer vision' robot localization



  

Hidden Markov Models (HMMs)

Sensor Markov Assumption: the current observation 
depends only on current state:



  

HMM example

sun cloudy 0.70.8

0.2

0.3

glasses No glasses

0.7 0.3

0.4

0.6

You live underground...

Every day, you're boss comes in either 
wearing sunglasses or not

Can you infer whether it's sunny out 
based on whether you see the glasses 
over a sequence of days?

– e.g. what's the prob it's sunny out 
today if you've seen your boss wear 
glasses three days in a row?

(state is unobserved)

(only observations are observed)



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update

The Kalman filter is perhaps the most 
famous instance of this idea
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HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update

“Beliefs”



  

Process update

This is just forward simulation of the Markov Model



  

Process update: example

T = 1 T = 2 T = 5

Completely certain 
about ghost 
position at T=1

A little less certain on 
the next time step...

By now, we've almost 
completely lost track 
of the ghost...

If we only do the process update, then we typically lose information over time
– when might this not be true?



  

Observation update

Where                                is a normalization factor



  

Observation update

Before observation After observation

Observations enable the system to gain information
– a single observation may not determine system state exactly
– but, the more observations, the better



  

Robot localization example

10
Prob
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Robot localization example
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Weather HMM example

sun cloudy 0.70.8

0.2

0.3

glasses No glasses

0.7 0.3

0.4

0.6



  

Weather HMM example
X_{t-1} X_t

sun sun
sun cloudy

X_t
0.8
0.2

cloudy sun
cloudy cloudy

0.3
0.7

X_t
sun

cloudy

P(g_t|X_t)
0.7
0.4

glasses glasses
No 

glasses

w_t

sun

cloudy

P(w_t)

0.5

0.5



  

Weather HMM example
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sun cloudy
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Weather HMM example
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Weather HMM example
X_{t-1} X_t

sun sun
sun cloudy

X_t
0.8
0.2

cloudy sun
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0.3
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No 
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X_t
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0.7
0.4
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sun
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P(w_t)

0.64

0.36

w_t

sun

cloudy

P(w_t)

0.76

0.24



Particle Filtering

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Representation: Particles

 Our representation of P(X) is now a list of N 
particles (samples)
 Generally, N << |X|
 Storing map from X to counts would defeat the 

point

 P(x) approximated by number of particles with 
value x
 So, many x may have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles
:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filtering: Elapse Time

 Each particle is moved by sampling 
its next position from the transition 
model

 This is like prior sampling – samples’ 
frequencies reflect the transition 
probabilities

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If enough samples, close to exact values 

before and after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



 Slightly trickier:
 Don’t sample observation, fix it

 Similar to likelihood weighting, 
downweight samples based on the 
evidence

 As before, the probabilities don’t sum to 
one, since all have been downweighted 
(in fact they now sum to (N times) an 
approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filtering: Resample

 Rather than tracking weighted 
samples, we resample

 N times, we choose from our 
weighted sample distribution (i.e. 
draw with replacement)

 This is equivalent to renormalizing 
the distribution

 Now the update is complete for 
this time step, continue with the 
next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Recap: Particle Filtering
 Particles: track samples of states rather than an explicit 

distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

     Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Robot Localization

 In robot localization:
 We know the map, but not the robot’s position
 Observations may be vectors of range finder 

readings
 State space and readings are typically 

continuous (works basically like a very fine 
grid) and so we cannot store B(X)

 Particle filtering is a main technique

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filter Localization (Sonar)



Particle Filter Localization (Laser)



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, 
using multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at 
each time

 Variables from time t can condition on those 
from t-1

 Dynamic Bayes nets are a generalization of 
HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



DBN Particle Filters

 A particle is a complete sample for a time step

 Initialize: Generate prior samples for the t=1 Bayes net
 Example particle: G1

a = (3,3) G1
b = (5,3) 

 Elapse time: Sample a successor for each particle 
 Example successor: G2

a = (2,3) G2
b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample
 Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

 Resample: Select prior samples (tuples of values) in 
proportion to their likelihood
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