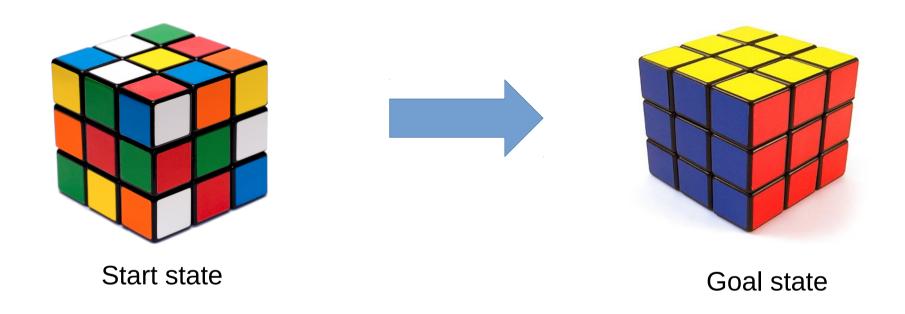
Heuristic Search

Rob Platt Northeastern University

Some images and slides are used from: AIMA

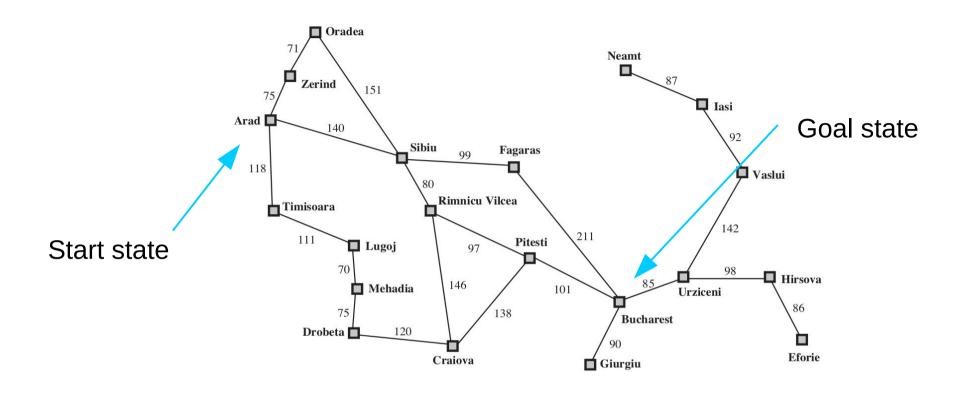
Recap: What is graph search?



Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?

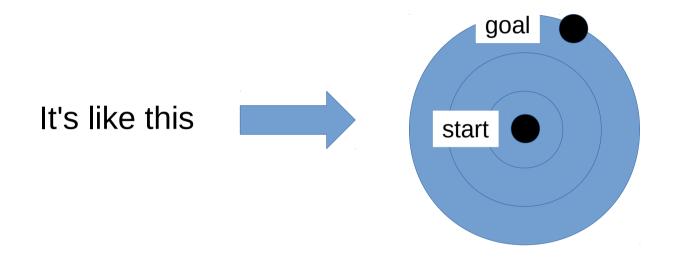
Recap: What is graph search?



Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?

Recap: BFS/UCS



- search in all directions equally until discovering goal

Idea

Is it possible to use additional information to decide which direction to search in?

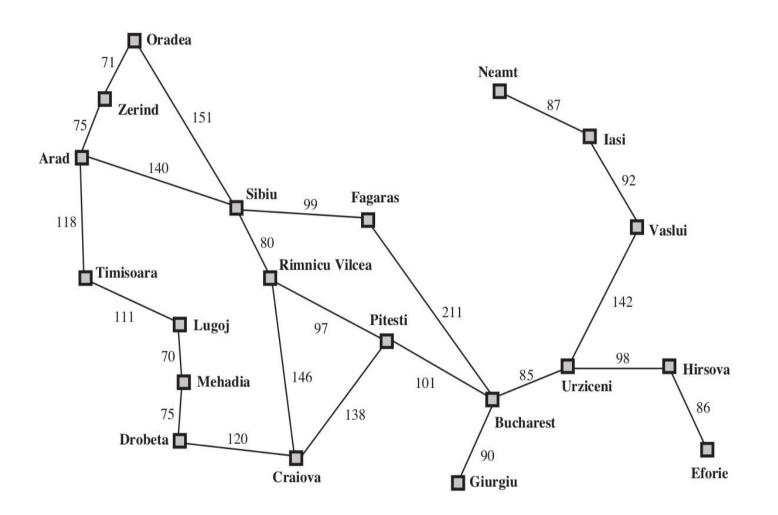
Idea

Is it possible to use additional information to decide which direction to search in?

Yes!

Instead of searching in all directions, let's bias search in the direction of the goal.

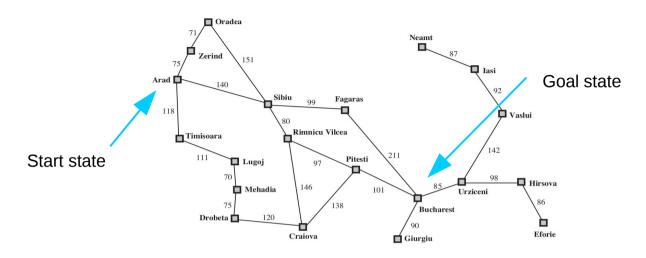
Example



Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Stright-line distances to Bucharest

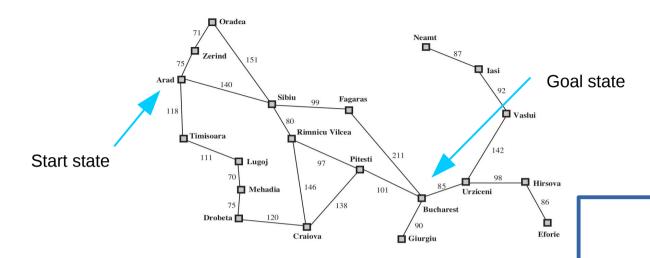
Example



Expand states in order of their distance to the goal

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal

Example



Heuristic: h(s)

Expand states in order of their distance to the goar

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal

Greedy search

Greedy Search

Greedy Search

Each time you expand a state, calculate the heuristic for each of the states that you add to the fringe.

– heuristic: h(s) i.e. distance to Bucharest

 on each step, choose to expand the state with the lowest heuristic value.

Greedy Search

This is like a guess about how far the state is from the goal

Each time you expand a state, calculate the heuristic for each of the states that you add to the fringe.

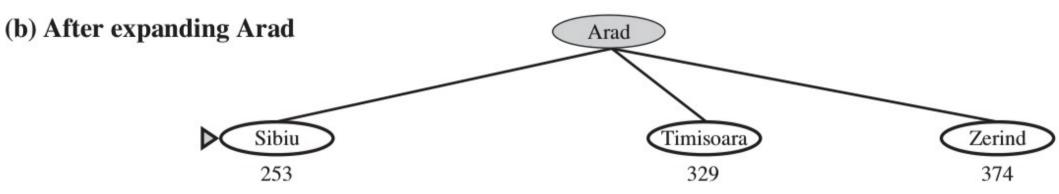
– heuristic: h(s)

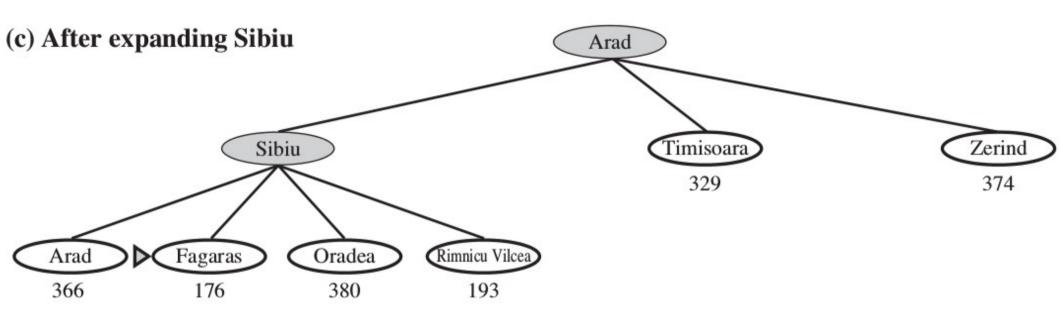
i.e. distance to Bucharest

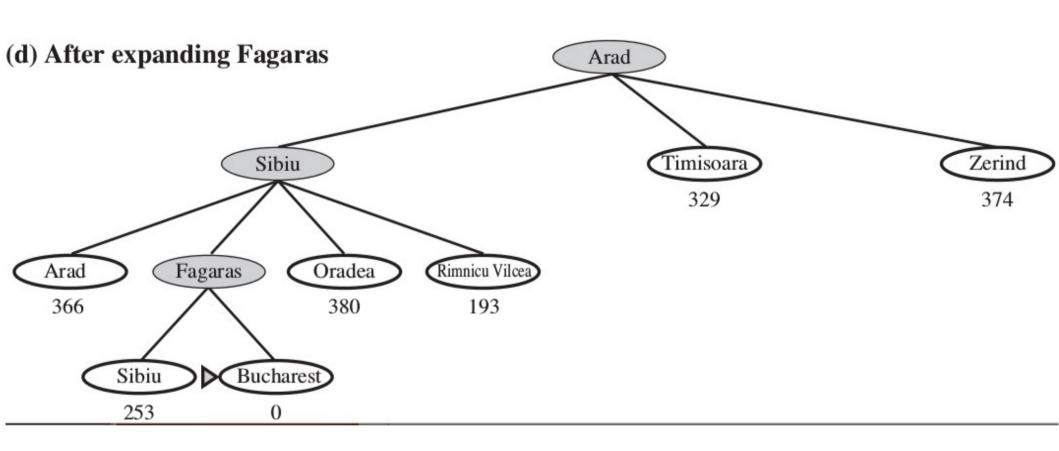
 on each step, choose to expand the state with the lowest heuristic value.

(a) The initial state

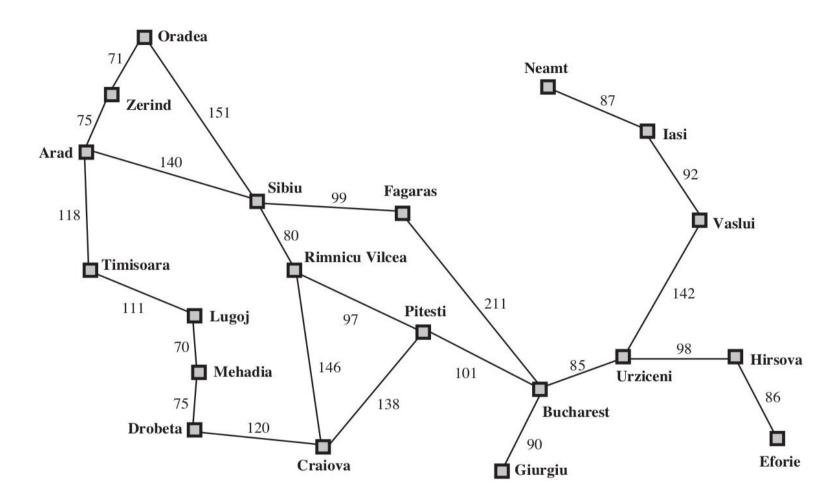






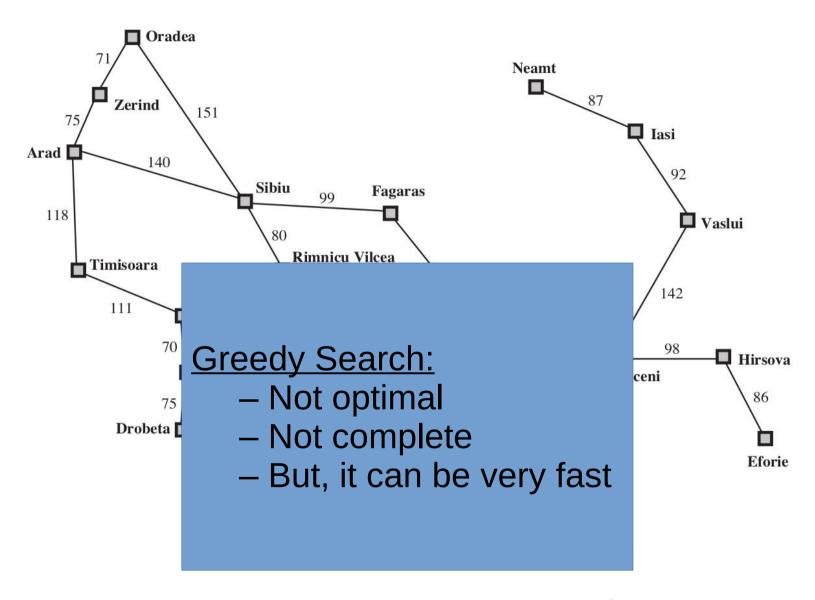


Path: A-S-F-B



Path: A-S-F-B

Notice that this is not the optimal path!



Notice that this is not the optimal path!

Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???

Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???

YES: A*

A*

s: a state

g(s) : minimum cost from start to

h(s) : heuristic at (i.e. an estimate of remaining cost-to-go)

<u>UCS</u>: expand states in order of g(s)

<u>Greedy</u>: expand states in order of h(s)

 $\underline{\mathsf{A}}^{\star}$: expand states in order of f(s) = g(s) + h(s)

A*

What is "cost-to-go"?

s: a state

g(s) : minimum cost from start to s

h(s) : heuristic at s (i.e. an estimate of remaining cost-to-go)

<u>UCS</u>: expand states in order of g(s)

<u>Greedy</u>: expand states in order of h(s)

 $\underline{\mathsf{A}}^{\star}$: expand states in order of f(s) = g(s) + h(s)

What is "cost-to-go"?

- minimum cost required to reach a goal state

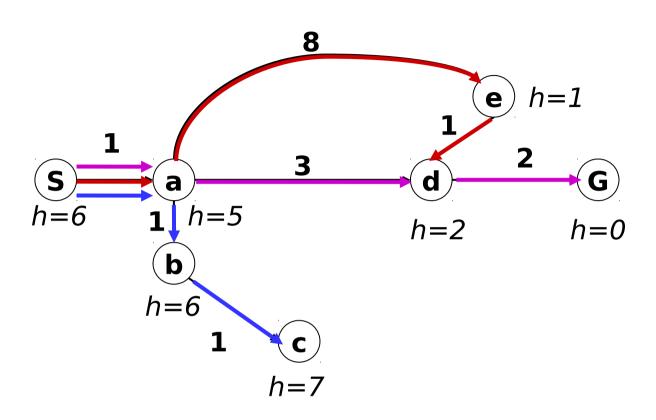
g(s) : minimum cost from start to s

h(s) : heuristic at s (i.e. an estimate of remaining cost-to-go)

<u>UCS</u>: expand states in order of g(s)

<u>Greedy</u>: expand states in order of h(s)

 $\underline{\mathsf{A}}^{\star}$: expand states in order of f(s) = g(s) + h(s)

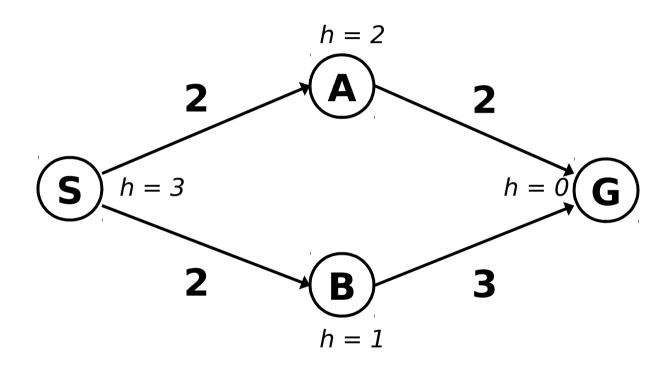


- Uniform-cost orders by path cost from Start: g(n)
- Greedy orders by estimated cost to goal: h(n)
- A* orders by the sum: f(n) = g(n) + h(n)

Modified from: Teg Grenager

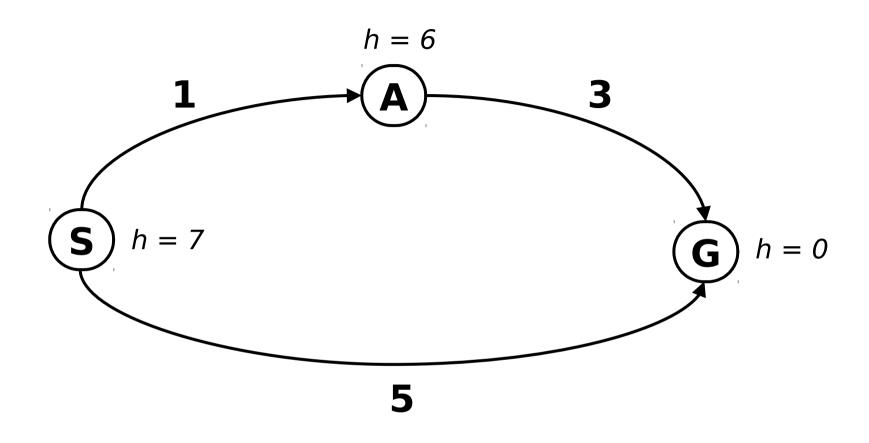
When should A* terminate?

Should we stop when we enqueue a goal?



No: only stop when we dequeue a goal

Is A* optimal?



What went wrong here?

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm.

Recall:

- in tree search, we <u>do not</u> track the explored set
- in graph search, we do

Recall: Breadth first search (BFS)

```
function Breadth-First-Search (problem) returns a solution, or failure
 node \leftarrow a node with STATE = problem. INITIAL-STATE, PATH-COST = 0
 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
 frontier \leftarrow a FIFO queue with node as the only element
explored \leftarrow an empty set
 loop do
     if EMPTY? (frontier) then return failure
     node \leftarrow Pop(frontier) /* chooses the shallowest node in frontier */
    add node.STATE to explored
    for each action in problem.ACTIONS(node.STATE) do
        child \leftarrow CHILD-NODE(problem, node, action)
       if child.STATE is not in explored or frontier then
            if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
            frontier \leftarrow INSERT(child, frontier)
```

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the *explored* set?

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm. ▲

Optimal if h is consistent

Optimal if h is admissible

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm. ▲

Optimal if h is consistent

h(s) is an underestimate
 of the cost of each arc.

Optimal if h is admissible

-h(s) is an underestimate of the true cost-to-go.

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm. ▲

Optimal if h is consistent

h(s) is an underestimate
 of the cost of each arc.

Optimal if h is admissible

-h(s) is an underestimate of the true cost-to-go.

minimum cost required to reach a goal state

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm. ▲

Optimal if h is consistent

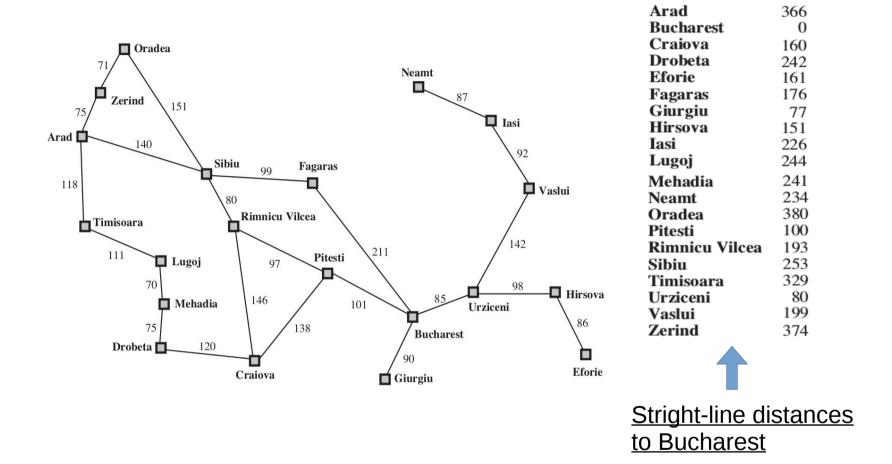
h(s) is an underestimate
 of the cost of each arc.

Optimal if h is admissible

-h(s) is an underestimate of the true cost-to-go.

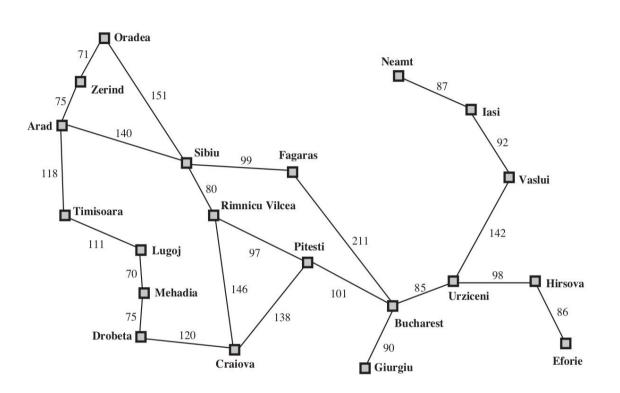
More on this later...

Admissibility: Example



h(s) = straight-line distance to goal state (Bucharest)

Admissibility



Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

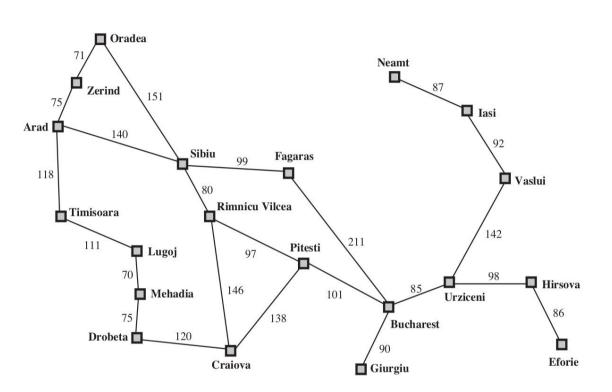
t-line distance

Stright-line distances to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible???

Admissibility



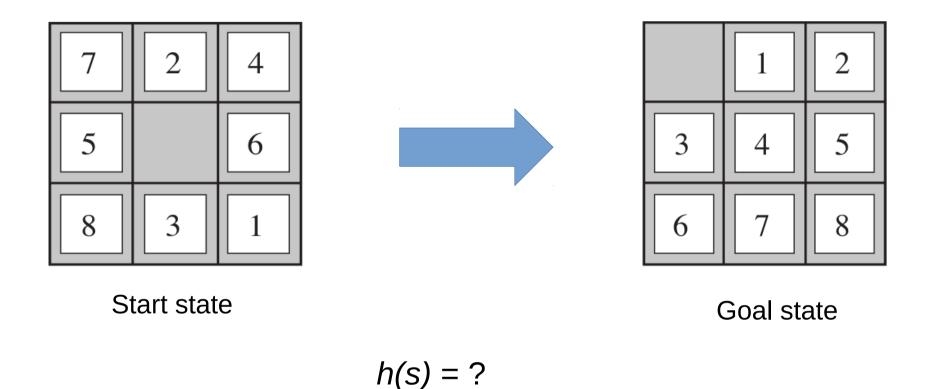
A T	200
Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Stright-line distances to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

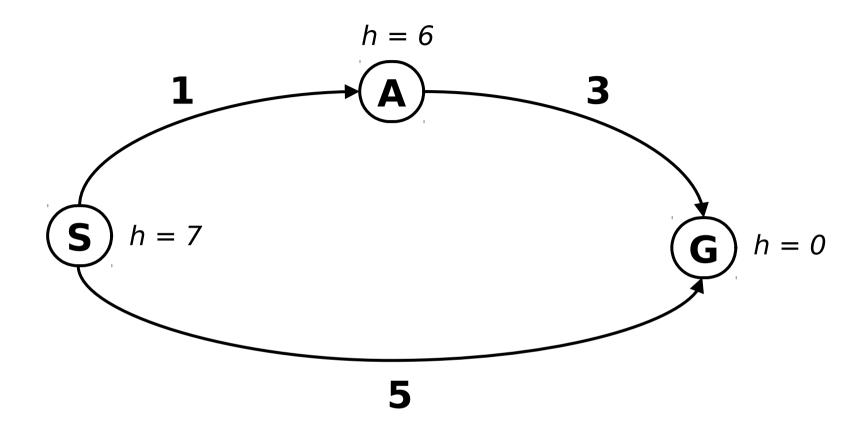
Is this heuristic admissible??? YES! Why?

Admissibility: Example



Can you think of an admissible heuristic for this problem?

Admissibility

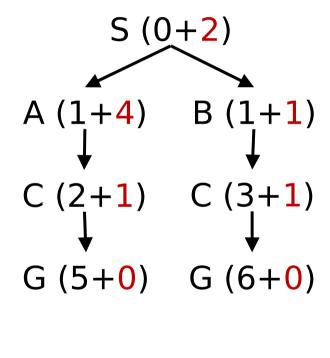


Why isn't this heuristic admissible?

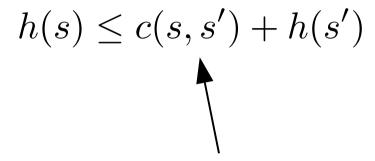
State space graph

S h=4 h=2 h=1 h=1 h=1 h=0

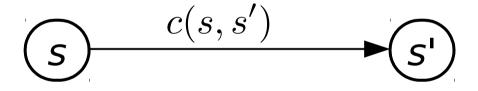
Search tree



What went wrong?



Cost of going from s to s'



$$h(s) \le c(s, s') + h(s')$$

$$h(s) - h(s') \le c(s, s')$$
 Rearrange terms

$$h(s) \le c(s, s') + h(s')$$

$$h(s) - h(s') \le c(s, s')$$

Cost of going from s to s' implied by heuristic

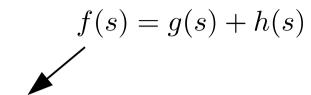
Actual cost of going from s to s'

$$h(s) \le c(s, s') + h(s')$$

$$h(s) - h(s') \le c(s, s')$$

Cost of going from s to s' implied by heuristic

Actual cost of going from s to s'



Consistency implies that the "f-cost" never decreases along any path to a goal state.

the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.

Given any goal state, A* expands states that reach the goal state optimally before expanding states the reach the goal state suboptimally.

Suppose: $\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T) + h(s_T)$

Suppose: $\forall s_t, s_{t+1} : h(s_t) \leq c(s_t, s_{t+1}) + h(s_{t+1})$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T)$

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then:
$$h(s_{T-1}) \le c(s_{T-1}, s_T)$$
 admissible

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then:
$$h(s_{T-1}) \le c(s_{T-1}, s_T)$$

$$h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(s_{T-1})$$

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then:
$$h(s_{T-1}) \le c(s_{T-1}, s_T)$$

$$h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(S_{T-1})$$

admissible

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then:
$$h(s_{T-1}) \le c(s_{T-1}, s_T)$$

$$h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(S_{T-1})$$

admissible

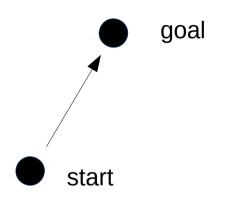
admissible

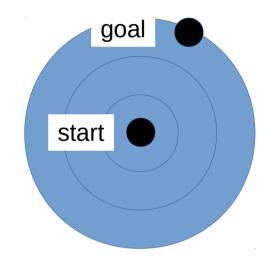
Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

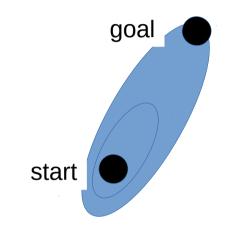
Then:
$$h(s_{T-1}) \le c(s_{T-1}, s_T)$$

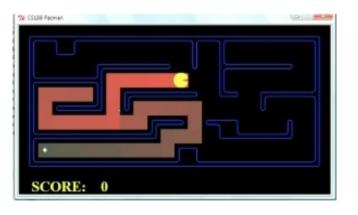
$$h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(S_{T-1})$$

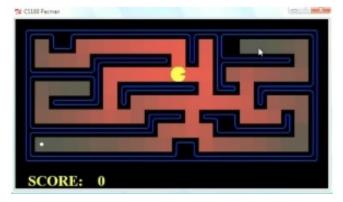
A* vs UCS











Greedy

UCS

A*

The right heuristic is often problem-specific.

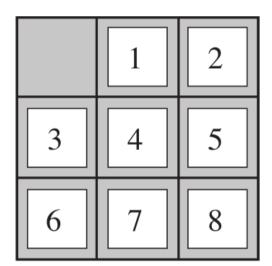
But it is very important to select a good heuristic!

Consider the 8-puzzle:

 h_1 : number of misplaced tiles

 h_2 : sum of manhattan distances between each tile and its goal.

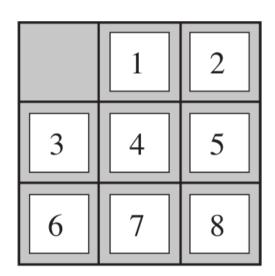
How much better is h_2 ?



Consider the 8-puzzle:

 h_1 : number of misplaced tiles

 h_2 : sum of manhattan distances between each tile and its goal.



Average # states expanded on a random depth-24 puzzle:

$$A^*(h_1) = 39k$$

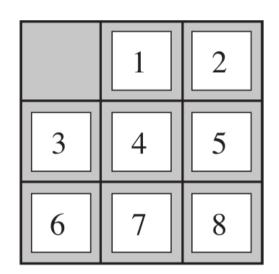
$$A^*(h_2) = 1.6k$$

$$IDS = 3.6M$$
 (by depth 12)

Consider the 8-puzzle:

 h_1 : number of misplaced tiles

 h_2 : sum of manhattan distances between each tile and its goal.



zle:

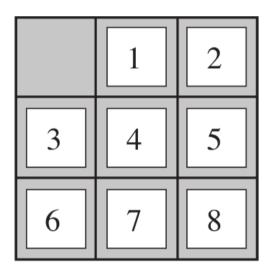
So, getting the heuristic right can speed things up by multiple orders of magnitude!

$$IDS = 3.6M$$
 (by depth 12)

Consider the 8-puzzle:

 h_1 : number of misplaced tiles

 h_2 : sum of manhattan distances between each tile and its goal.



Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:

- solve a relaxed version of the problem
- solve a subproblem