Heuristic Search

Rob Platt
Northeastern University
Some images and slides are used from: AIMA

Recap: What is graph search?

Start state

Goal state

Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?

Recap: What is graph search?

Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?

Recap: BFS/UCS

It's like this

- search in all directions equally until discovering goal

Idea

Is it possible to use additional information to decide which direction to search in?

Idea

Is it possible to use additional information to decide which direction to search in?

Yes!

Instead of searching in all directions, let's bias search in the direction of the goal.

Example

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Stright-line distances
to Bucharest

Example

Expand states in order of their distance to the goal

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal

Example

Start state

Heuristic: $h(s)$

Expand states in order of their distance to the your

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal

Greedy Search

Greedy Search

Each time you expand a state, calculate the heuristic for each of the states that you add to the fringe.

- heuristic: $h(s)$
i.e. distance to Bucharest
- on each step, choose to expand the state with the lowest heuristic value.

Greedy Search

This is like a guess about how far the state is from the goal

Each time you expand a state, calculate the heuristici'for each of the states that you add to the fringe.

- heuristic: $h(s)$
i.e. distance to Bucharest
- on each step, choose to expand the state with the lowest heuristic value.

Example: Greedy Search

(a) The initial state

Example: Greedy Search

(b) After expanding Arad

253

Example: Greedy Search

(c) After expanding Sibiu

Arad

Example: Greedy Search

Path: A-S-F-B

Example: Greedy Search

Path: A-S-F-B

Notice that this is not the optimal path!

Example: Greedy Search

Notice that this is not the optimal path!

Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???

Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???
YES: A^{*}
A^{*}

A*

s : a state
$g(s)$: minimum cost from start to
$h(s)$: heuristic at (i.e. an estimate of remaining cost-to-go)

UCS: expand states in order of $g(s)$
Greedy: expand states in order of $h(s)$
A*: expand states in order of $f(s)=g(s)+h(s)$

What is "cost-to-go"?

s : a state
$g(s)$: minimum cost trom start to s
$h(s)$: heuristic at s (i.e. ant estimate of remaining 'Cost-to-gō":

UCS: expand states in order of $g(s)$
Greedy: expand states in order of $h(s)$
A*: expand states in order of $f(s)=g(s)+h(s)$

A^{*}

What is "cost-to-go"?
 s : a state - minimum cost required to reach a goal state

$g(s)$: minımum cost trom start to s
$h(s)$: heuristic at s (i.e. an estimate of remaining 'Cost-to-gō':

UCS: expand states in order of $g(s)$
Greedy: expand states in order of $h(s)$
A*: expand states in order of $f(s)=g(s)+h(s)$

A*

- Uniform-cost orders by path cost from Start: g(n)
- Greedy orders by estimated cost to goal: h(n)
- A^{*} orders by the sum: $f(n)=g(n)+h(n)$

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* optimal?

What went wrong here?

When is A^{*} optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm.

Recall:

- in tree search, we do not track the explored set
- in graph search, we do

Recall: Breadth first search (BFS)

```
function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure
    node }\leftarrow\mathrm{ a node with STATE = problem.InITIAL-STATE, PATH-COST =0
    if problem.GoAL-TEST(node.STATE) then return SOlUTION(node)
    frontier }\leftarrow\textrm{a}\mathrm{ FIFO queue with node as the only element
    "explored }\leftarrow\mathrm{ an empty set ",
    1oop do
            if Empty?(frontier) then return failure
            node \leftarrow POP( frontier)_ /* chooses the shallowest node in frontier */
            " add node.STATE to explored"
            for each action in problem.Actions(node.STATE) do
            child \leftarrowCHILD-NODE(problem, node, action)
            "if child.STATE is not in explored or frontier then "
            = - - if p
            frontier }\leftarrow\mathrm{ INSERT(child,frontier)
```

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

When is A^{*} optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm. 4

Optimal if h is consistent
Optimal if h is admissible

When is A^{*} optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm. 4

Optimal if h is consistent
$-\mathrm{h}(\mathrm{s})$ is an underestimate of the cost of each arc.

Optimal if h is admissible
$-h(s)$ is an underestimate
of the true cost-to-go.

When is A* optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm. 4

Optimal if h is consistent
$-\mathrm{h}(\mathrm{s})$ is an underestimate of the cost of each arc.

Optimal if h is admissible
$-h(s)$ is an underestimate
of the true cost-to-go.

What is "cost-to-go"?

- minimum cost required to reach a goal state

When is A^{*} optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm. 4

Optimal if h is consistent
$-\mathrm{h}(\mathrm{s})$ is an underestimate of the cost of each arc.

Optimal if h is admissible
$-h(s)$ is an underestimate
of the true cost-to-go.

More on this later...

Admissibility: Example

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Stright-line distances to Bucharest

$h(s)=$ straight-line distance to goal state (Bucharest)

Admissibility

$h(s)=$ straight-line distance to goal state (Bucharest)

Admissibility

Arad 366
Bucharest
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Stright-line distances to Bucharest

$h(s)=$ straight-line distance to goal state (Bucharest)

Is this heuristic admissible???
YES! Why?

Admissibility: Example

Start state

Goal state

$$
h(s)=?
$$

Can you think of an admissible heuristic for this problem?

Admissibility

Why isn't this heuristic admissible?

Consistency

State space graph

Search tree

What went wrong?

Consistency

$$
h_{\left.(s) \leq(s, s)^{\prime}\right)+h(s)}
$$

Cost of going from s to s^{\prime}

Consistency

$$
\begin{aligned}
& h(s) \leq c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right) \\
& h(s)-h\left(s^{\prime}\right) \leq c\left(s, s^{\prime}\right) \longleftarrow \quad \text { Rearrange terms }
\end{aligned}
$$

Consistency

$$
\begin{aligned}
& \quad h(s) \leq c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right) \\
& \quad \underbrace{\begin{array}{c}
\text { Cost of going from s to s' } \\
\text { implied by heuristic }
\end{array}}
\end{aligned}
$$

Actual cost of going from s to s^{\prime}

Consistency

$$
\begin{aligned}
& \quad h(s) \leq c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right) \\
& \quad \underbrace{\begin{array}{c}
\text { Cost of going from s to s' } \\
\text { implied by heuristic }
\end{array}}
\end{aligned}
$$

Actual cost of going from s to s^{\prime}

Consistency

$$
f(s)=g(s)+h(s)
$$

Consistency implies that the "f-cost" never decreases along any path to a goal state.

- the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.
Given any goal state, A^{*} expands states that reach the goal state optimally before expanding states the reach the goal state suboptimally.

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right)+h\left(s_{T}\right)
$$

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right)
$$

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right) \longleftarrow \text { admissible }
$$

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
h\left(s_{T-1}\right) & \leq c\left(s_{T-1}, s_{T}\right) \\
h\left(s_{T-2}\right) & \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(s_{T-1}\right)
\end{aligned}
$$

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
h\left(s_{T-1}\right) & \leq c\left(s_{T-1}, s_{T}\right) \\
h\left(s_{T-2}\right) & \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(S_{T-1}\right)
\end{aligned}
$$

admissible

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
& h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right) \\
& h\left(s_{T-2}\right) \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(S_{T-1}\right) \\
& \text { admissible } \quad \text { admissible }
\end{aligned}
$$

Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
h\left(s_{T-1}\right) & \leq c\left(s_{T-1}, s_{T}\right) \\
h\left(s_{T-2}\right) & \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(S_{T-1}\right)
\end{aligned}
$$

A* vs UCS

UCS

A*

Choosing a heuristic

The right heuristic is often problem-specific.
But it is very important to select a good heuristic!

Choosing a heuristic

Consider the 8-puzzle:
h_{1} : number of misplaced tiles
h_{2} : sum of manhattan distances between each tile and its goal.

How much better is h_{2} ?

Choosing a heuristic

Consider the 8-puzzle:
h_{1} : number of misplaced tiles
h_{2} : sum of manhattan distances between each tile and its goal.

Average \# states expanded on a random depth-24 puzzle:
$A^{*}\left(h_{1}\right)=39 k$
$A^{*}\left(h_{2}\right)=1.6 k$
$I D S=3.6 M \quad$ (by depth 12)

Choosing a heuristic

Consider the 8-puzzle:
h_{1} : number of misplaced tiles
h_{2} : sum of manhattan distances between each tile and its goal.

Choosing a heuristic

Consider the 8-puzzle:
h_{1} : number of misplaced tiles
h_{2} : sum of manhattan distances between each tile and its goal.

Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.
A couple of best-practices:

- solve a relaxed version of the problem
- solve a subproblem

