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What is a Bayes Net?



  

What is a Bayes Net?

Suppose we're given this distribution:

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

Variables:
Cavity
Toothache (T)
Catch (C)



  

What is a Bayes Net?

Suppose we're given this distribution:

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

Variables:
Cavity
Toothache (T)
Catch (C)

Can we summarize aspects of this 
probability distribution with a graph?



  

What is a Bayes Net?

This diagram captures important information 
that is hard to extract from table by looking at it:

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

Cavity

toothache catch



  

What is a Bayes Net?

This diagram captures important information 
that is hard to extract from table by looking at it:

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

Cavity

toothache catch

Cavity causes 
toothache Cavity causes 

catch



  

What is a Bayes Net?

Bubbles: random variables

Arrows: dependency 
relationships between variables

Something that looks like this:



  

What is a Bayes Net?

Bubbles: random variables

Arrows: dependency 
relationships between variables

Something that looks like this:

A Bayes net is a compact way of 
representing a probability distribution



  

Bayes net example

Cavity

toothache catch

Diagram encodes the fact that toothache is 
conditionally independent of catch given 
cavity

– therefore, all we need are the following 
distributions

cavity P(T|cav)

true 0.9

false 0.3

cavity P(C|cav)

true 0.9

false 0.2

P(cavity) = 0.2

Prior probability 
of cavity

Prob of catch 
given cavity

Prob of toothache 
given cavity



  

Bayes net example

Cavity

toothache catch

Diagram encodes the fact that toothache is 
conditionally independent of catch given 
cavity

– therefore, all we need are the following 
distributions

cavity P(T|cav)

true 0.9

false 0.3

cavity P(C|cav)

true 0.9

false 0.2

P(cavity) = 0.2

Prior probability 
of cavity

Prob of catch 
given cavity

Prob of toothache 
given cavity

This is called a “factored” representation



  

Bayes net example

cavity P(T|cav)

true 0.9

false 0.3

cavity P(C|cav)

true 0.9

false 0.2

P(cavity) = 0.2

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

How do we recover joint distribution from factored representation?

Cavity

toothache catch



  

Bayes net example

cavity P(T|cav)

true 0.9

false 0.3

cavity P(C|cav)

true 0.9

false 0.2

P(cavity) = 0.2

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

P(T,C,cavity) = P(T,C|cav)P(cav)

= P(T|cav)P(C|cav)P(cav)

What is this step?

What is this step?

Cavity

toothache catch



  

Bayes net example

Cavity

toothache catch

cavity P(T|cav)

true 0.9

false 0.3

cavity P(C|cav)

true 0.9

false 0.2

P(cavity) = 0.2

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

P(T,C,cavity) = P(T,C|cav)P(cav)

How calculate these?

= P(T|cav)P(C|cav)P(cav)



  

Bayes net example

cavity P(T|cav)

true 0.9

false 0.3

cavity P(C|cav)

true 0.9

false 0.2

P(cavity) = 0.2

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

P(T,C,cavity) = P(T,C|cav)P(cav)

How calculate these?

= P(T|cav)P(C|cav)P(cav)

In general:

Cavity

toothache catch



  

Another example



  

Another example

?



  

Another example



  

Another example

How much space did the 
BN representation save?



  

A simple example

winter

snow

winter P(S|W)

true 0.3

false 0.01

Parameters of Bayes network Structure of Bayes network

P(winter)=0.5

winter

snow 0.15

!snow 0.35

!winter

0.005

0.495

Joint distribution implied by bayes network



  

A simple example

snow

winter

snow P(W|S)

true 0.968

false 0.414

Parameters of Bayes network Structure of Bayes network

P(snow)=0.155

winter

snow 0.15

!snow 0.35

!winter

0.005

0.495

Joint distribution implied by bayes network



  

A simple example

snow

winter

snow P(W|S)

true 0.968

false 0.414

Parameters of Bayes network Structure of Bayes network

P(snow)=0.155

winter

snow 0.15

!snow 0.35

!winter

0.005

0.495

Joint distribution implied by bayes network

What does this say about causality 
and bayes net semantics?

– what does bayes net topology encode?



  

D-separation

What does bayes network structure imply about conditional independence among variables?

R

T

B

D

L

T’

Are D and T independent?

Are D and T conditionally independent given R?

Are D and T conditionally independent given L?

D-separation is a method of answering these questions...



  

D-separation

X Y Z

Causal chain:

Z is conditionally independent of X given Y
If Y is unknown, then Z is correlated with X

For example:
X = I was hungry
Y = I put pizza in the oven
Z = house caught fire

Fire is conditionally independent of Hungry given Pizza...
– Hungry and Fire are dependent if Pizza is unknown
– Hungry and Fire are independent if Pizza is known



  

D-separation

X Y Z

Causal chain:

Z is conditionally independent of X given Y.

For example:
X = I was hungry
Y = I put pizza in the oven
Z = house caught fire

Fire is conditionally independent of Hungry given Pizza...
– Hungry and Fire are dependent if Pizza is unknown
– Hungry and Fire are independent if Pizza is known

Exercise: Prove it!



  

D-separation

Causal chain:

Z is conditionally independent of X given Y.

For example:
X = I was hungry
Y = I put pizza in the oven
Z = house caught fire

Fire is conditionally independent of Hungry given Pizza...
– Hungry and Fire are dependent if Pizza is unknown
– Hungry and Fire are independent if Pizza is known

Exercise: Prove it!



  

D-separation

Common cause:

Z is conditionally independent of X given Y.
If Y is unknown, then Z is correlated with X

For example:
X = john calls
Y = alarm
Z = mary calls

X

Y

Z



  

D-separation

Common cause:

Z is conditionally independent of X given Y.
If Y is unknown, then Z is correlated with X

For example:
X = john calls
Y = alarm
Z = mary calls

X

Y

Z

Exercise: Prove it!



  

D-separation

Common effect:

If Z is unknown, then X, Y are independent
If Z is known, then X, Y are correlated

For example:
X = burglary
Y = earthquake
Z = alarm

X Y

Z



  

D-separation

Given an arbitrary Bayes Net, you can find out whether two 
variables are independent just by looking at the graph.



  

D-separation

Given an arbitrary Bayes Net, you can find out whether two 
variables are independent just by looking at the graph.

How?



  

D-separation

Given an arbitrary Bayes Net, you can find out whether two 
variables are independent just by looking at the graph.

Are X, Y independent given A, B, C?

1. enumerate all paths between X and Y

2. figure out whether any of these paths are active

3. if no active path, then X and Y are independent



  

D-separation

Are X, Y independent given A, B, C?

1. enumerate all paths between X and Y

2. figure out whether any of these paths are active

3. if no active path, then X and Y are independent

What's an active path?



  

Active path

Active triples Inactive triples

Any path that has an inactive triple on it is inactive
If a path has only active triples, then it is active



  

Example



  

Example



  

Example



  

D-separation

What Bayes Nets do: 

– constrain probability distributions that can be represented

– reduce the number of parameters

Constrained by conditional independencies 
induced by structure

– can figure out what these are by using 
d-separation

Is there a Bayes Net can represent any distribution?



  

Exact Inference

winter P(S|W)

true 0.3

false 0.01

P(winter)=0.5 winter

snow

crash

snow P(C|S)

true 0.1

false 0.01

Given this 
Bayes Network

Calculate P(C)

Calculate P(C|W)



  

Exact Inference

winter P(S|W)

true 0.3

false 0.01

P(winter)=0.5 winter

snow

crash

snow P(C|S)

true 0.1

false 0.01

Given this 
Bayes Network

Calculate P(C)

Calculate P(C|W)



  

Exact Inference

winter P(S|W)

true 0.3

false 0.01

P(winter)=0.5 winter

snow

crash

snow P(C|S)

true 0.1

false 0.01

Given this 
Bayes Network

Calculate P(C)

Calculate P(C|W)



  

Inference by enumeration

How exactly calculate this?

Inference by enumeration:

1. calculate joint distribution
2. marginalize out variables we don't care about.



  

Inference by enumeration

How exactly calculate this?

Inference by enumeration:

1. calculate joint distribution
2. marginalize out variables we don't care about.

winter P(S|W)

true 0.3

false 0.1

P(winter)=0.5

snow P(C|S)

true 0.1

false 0.01

winter snow

true true

false true

P(c,s,w)

0.015

0.005

true false

false false

0.0035

0.0045

Joint distribution



  

Inference by enumeration

How exactly calculate this?

Inference by enumeration:

1. calculate joint distribution
2. marginalize out variables we don't care about.

Joint distribution

P(C) = 0.015+0.005+0.0035+0.0045

        = 0.028

winter snow

true true

false true

P(c,s,w)

0.015

0.005

true false

false false

0.0035

0.0045



  

Inference by enumeration

How exactly calculate this?

Inference by enumeration:

1. calculate joint distribution
2. marginalize out variables we don't care about.

P(C) = 0.015+0.005+0.0035+0.0045

        = 0.028

winter snow

true true

false true

P(c,s,w)

0.015

0.005

true false

false false

0.0035

0.0045

Pros/cons?

Pro: it works

Con: you must calculate the full joint distribution first
– what's wrong w/ that???



  

Enumeration vs variable elimination

Join on w

Join on s

Eliminate s

Eliminate w

Join on w

Eliminate w

Join on s

Eliminate s

Enumeration Variable elimination

Variable elimination marginalizes early
– why does this help?



  

Variable elimination

winter P(s|W)

true 0.3

false 0.1

P(winter)=0.5

snow P(c|S)

true 0.1

false 0.01

Join on W
winter P(s,W)

true 0.15

false 0.05

P(snow)=0.2

Sum out SJoin on S
snow P(c,S)

true 0.02

false 0.008

P(crash)=0.08

Sum out W

P(snow)=0.2

...



  

Variable elimination

winter P(s|W)

true 0.3

false 0.1

P(winter)=0.5

snow P(c|S)

true 0.1

false 0.01

Join on W
winter P(s,W)

true 0.15

false 0.05

P(snow)=0.2

Sum out SJoin on S
snow P(c,S)

true 0.02

false 0.008

P(crash)=0.08

Sum out W

P(snow)=0.2

How does this change if we are given evidence?
– i.e. suppose we are know that it is winter time?



  

Variable elimination w/ evidence

winter P(s|w)

true 0.3

false 0.1

P(winter)=0.5

Select +w
snow P(s,w)

true 0.15

false 0.35

Sum out S
Join on S

snow P(!c,S,w)

true 0.135

false 0.3465

P(c,w)=0.0185

snow P(c,S,w)

true 0.015

false 0.0035

snow P(c|S)

true 0.1

false 0.01

Sum out S P(!c,w)=0.4815

P(c|w)=0.037

P(!c|w)=0.963

Normalize



  

Variable elimination: general procedure

Variable elimination:

Given: evidence variables, e_1, …, e_m; variable to infer, Q
Given: all CPTs (i.e. factors) in the graph
Calculate: P(Q|e_1, dots, e_m)

1. select factors for the given evidence
2. select ordering of “hidden” variables: vars = {v_1, …, n_n}
3. for i = 1 to n
4.   join on v_i
5.   marginalize out v_i
6. join on query variable
7. normalize on query: P(Q|e_1, dots, e_m)



  

Variable elimination: general procedure

Variable elimination:

Given: evidence variables, e_1, …, e_m; variable to infer, Q
Given: all CPTs (i.e. factors) in the graph
Calculate: P(Q|e_1, dots, e_m)

1. select factors for the given evidence
2. select ordering of “hidden” variables: vars = {v_1, …, n_n}
3. for i = 1 to n
4.   join on v_i
5.   marginalize out v_i
6. join on query variable
7. normalize on query: P(Q|e_1, dots, e_m)

winter P(s|W)
true 0.3
false 0.1

– What are the evidence variables in 
the winter/snow/crash example?
– What are hidden variables? Query 
variables?

i.e. not query or evidence



  

Variable elimination: general procedure example

P(b|m,j) = ?



  

Variable elimination: general procedure example

P(b|m,j) = ?

1. select evidence variables
– P(m|A) P(j|A)

2. select variable ordering: A,E
3. join on A

– P(m,j,A|B,E) = P(m|A) P(j|A) P(A|B,E)
4. marginalize out A

– P(m,j|B,E) = \sum_A P(m,j,A|B,E)
5. join on E

– P(m,j,E|B) = P(m,j|B,E) P(E)
6. marginalize out E

– P(m,j|B) = \sum_E P(m,j,E|B)
7. join on B

– P(m,j,B) = P(m,j|B)P(B)
8. normalize on B

– P(B|m,j)



  

Variable elimination: general procedure example

P(b|m,j) = ?Same example with equations:



  

Another example

Calculate P(X_3|y_1,y_2,y_3)
Use this variable ordering: X_1, X_2, Z

normalize



  

Another example

Calculate P(X_3|y_1,y_2,y_3)
Use this variable ordering: X_1, X_2, Z

normalize

What would this look like if we used a different ordering: Z, X_1, X_2?
– why is ordering important?



  

Another example

Calculate P(X_3|y_1,y_2,y_3)
Use this variable ordering: X_1, X_2, Z

normalize

What would this look like if we used a different ordering: Z, X_1, X_2?
– why is ordering important?

Ordering has a major impact on size of largest factor

– size 2^n vs size 2
– an ordering w/ small factors might not exist for a given network
– in worst case, inference is np-hard in the number of variables

– an efficient solution to inference would produce efficent sol'ns to 3SAT



  

Polytrees

Polytree:

– bayes net w/ no undirected cycles
– inference is simpler than the general case (why)?

– what is maximum factor size?
– what is the complexity of inference?

Can you do cutset conditioning?



  

Approximate Inference

Can't do exact inference in all situations (because of complexity)

Alternatives?



  

Approximate Inference

Can't do exact inference in all situations (because of complexity)

Alternatives?

Yes: approximate inference

Basic idea: sample from the distribution and then evaluate distribution of interest



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1, 0

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1, 0, 1

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 0, 1, 1
0, 0, 1, 1
...

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 0, 1, 1
0, 0, 1, 1
...

P(W|C) = 3/3

P(R|S) = 0/2

P(W) = 5/5

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 0, 1, 1
0, 0, 1, 1
...

P(W|C) = 3/3

P(R|S) = 0/2

P(W) = 5/5

What are the strengths/weakness of this approach?

Calculate P(Q|e_1,...,e_n)



  

Direct Sampling/Rejection Sampling

1. sort variables in topological order (partial order)
2. starting with root, draw one sample for each variable, X_i, from P(X_i|parents(X_i))
3. repeat step 2 n times and save the results
4. induce distribution of interest from samples

Topological sort: C,S,R,W

C, S, R, W
1, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 0, 1, 1
0, 0, 1, 1
...

P(W|C) = 3/3

P(R|S) = 0/2

P(W) = 5/5

What are the strengths/weakness of this approach?
– inference is easy
– estimates are consistent (what does that mean?)
– hard to get good estimates if evidence occurs rarely

Calculate P(Q|e_1,...,e_n)



  

Likelihood weighting
What if the evidence is unlikely?

– use likelihood weighting!

Idea: 
– only generate samples consistent w/ evidence
– but weight that samples according to likelihood of evidence 

in that scenario



  

Likelihood weighting

1. sort variables in topological order (partial order)
2. init W = 1
3. set all evidence variables to their query values
4. starting with root, draw one sample for each non-evidence variable:

X_i, from P(X_i|parents(X_i))
5. as you encounter the evidence variables, W=W*P(e|samples)
6. repeat steps 2--5 n times and save the results
7. induce distribution of interest from weighted samples

Calculate P(Q|e_1,...,e_n)

Calculate: P(S,R|c,w)

C, S, R, W, weight
            1



  

Likelihood weighting

1. sort variables in topological order (partial order)
2. init W = 1
3. set all evidence variables to their query values
4. starting with root, draw one sample for each non-evidence variable:

X_i, from P(X_i|parents(X_i))
5. as you encounter the evidence variables, W=W*P(e|samples)
6. repeat steps 2--5 n times and save the results
7. induce distribution of interest from weighted samples

Calculate P(Q|e_1,...,e_n)

Calculate: P(S,R|c,w)

C, S, R, W, weight
1,          0.5



  

Likelihood weighting
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2. init W = 1
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7. induce distribution of interest from weighted samples

Calculate P(Q|e_1,...,e_n)

Calculate: P(S,R|c,w)

C, S, R, W, weight
1, 0,       0.5
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Calculate: P(S,R|c,w)

C, S, R, W, weight
1, 0, 1,    0.5



  

Likelihood weighting

1. sort variables in topological order (partial order)
2. init W = 1
3. set all evidence variables to their query values
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P(s|c,w) = 0.476/sum W

P(r|c,w) = 0.46/sum W
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4. starting with root, draw one sample for each non-evidence variable:
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5. as you encounter the evidence variables, W=W*P(e|samples)
6. repeat steps 2--5 n times and save the results
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1, 1, 1, 1, 0.495
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Bayes net example

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

Is there a way to represent this distribution 
more compactly?



  

Bayes net example

Cavity

toothache catch

cavity P(T,C)

true 0.16

false 0.048

P(T,!C)

0.018

0.19

P(!T,C)

0.018

0.11

P(!T,!C)

0.002

0.448

Is there a way to represent this distribution 
more compactly?

– does this diagram help?
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