
Adversarial Search

Rob Platt
Northeastern University

Some images and slides are used from:
AIMA
CS188 UC Berkeley



What is adversarial search?

Adversarial search: planning used to play a game such as chess or checkers

– algorithms are similar to graph search except that we plan under the 
assumption that our opponent will maximize his own advantage...



Chess

Checkers

Tic-tac-toe

Go

Solved/unsolved?

Solved/unsolved?

Solved/unsolved?

Solved/unsolved?

Outcome of game can be predicted 
from any initial state assuming 

both players play perfectly

Some types of games



Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Outcome of game can be predicted 
from any initial state assuming 

both players play perfectly

Unsolved

Solved

Solved

Unsolved



Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Outcome of game can be predicted 
from any initial state assuming 

both players play perfectly

Unsolved

Solved

Solved

Unsolved

~10^40 states

~10^20 states

Less than 9!=362k states

?



Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Perfect information / imperfect information



Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Perfect information / imperfect information

Zero Sum:
– utilities of all players sum to 
zero
– pure competition

Non-Zero Sum:
– utility function of each play 
could be arbitrary
– optimal strategies could involve 
cooperation



Formalizing a Game

Calculate a policy: Action that player p 
should take from state s

Given:



Formalizing a Game

Calculate a policy: Action that player p 
should take from state s

Given:

How?



How solve for a policy?

Use adversarial search!
– build a game tree



This is a game tree for tic-tac-toe



This is a game tree for tic-tac-toe

You



This is a game tree for tic-tac-toe

You

Them



This is a game tree for tic-tac-toe

You

Them

You



This is a game tree for tic-tac-toe

You

Them

Them

You



This is a game tree for tic-tac-toe

You

Them

Them

You

Utility



What is Minimax?

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends



What is Minimax?

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree 
look like in this case?



What is Minimax?

3 812 2 64 14 25

Max
(you)

Min
(them)

Max
(you)

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree 
look like in this case?



What is Minimax?

3 812 2 64 14 25

Max
(you)

Min
(them)

Max
(you)

These are terminal utilities
– assume we know what 

these values are



What is Minimax?

3 812 2 64 14 25

3 2 2

Max
(you)

Min
(them)

Max
(you)



What is Minimax?

3 812 2 64 14 25

3 2 2

3Max
(you)

Min
(them)

Max
(you)

Max
(you)

Min
(them)



What is Minimax?

3 812 2 64 14 25

3 2 2

3Max
(you)

Min
(them)

Max
(you)

This is called 
“backing up” 

the values



Minimax

3 812 2 64 14 25

Okay – so we know how to back up values ...

… but, how do we construct the tree?

This tree is already built...



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 12



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812

3



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812

3



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812 2 64

3 2



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812 2 64 14 25

3 2 2

3



Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.
– since most games have forward progress, the distinction

between tree search and graph search is less important



Minimax



Is it always correct to assume your opponent plays optimally?

Minimax properties

10 10 9 100

Max
(you)

Min
(them)

Max
(you)

?



Is minimax optimal? Is it complete?

Minimax properties



Is minimax optimal? Is it complete?

Time complexity = ?

Space complexity = ?

Minimax properties



Is minimax optimal? Is it complete?

Time complexity = 

Space complexity = 

Minimax properties



Is minimax optimal? Is it complete?

Time complexity = 

Space complexity = 

Is it practical? In chess, b=35, d=100

Minimax properties



Is minimax optimal? Is it complete?

Time complexity = 

Space complexity = 

Is it practical? In chess, b=35, d=100

Minimax properties

is a big number...



Is minimax optimal? Is it complete?

Time complexity = 

Space complexity = 

Is it practical? In chess, b=35, d=100

Minimax properties

is a big number...

So what can we do?



Key idea: cut off search at a certain depth and give the 
corresponding nodes an estimated value.

Evaluation functions

Cut off 
recursion here

1

-5 -6

-6

3 1

1



Key idea: cut off search at a certain depth and give the 
corresponding nodes an estimated value.

Evaluation functions

Cut off 
recursion here

1

-5 -6

-6

3 1

1

the evaluation function 
makes this estimate.



Evaluation functions

How does the evaluation function make the estimate?
– depends upon domain

For example, in chess, the value of a state 
might equal the sum of piece values.

– a pawn counts for 1
– a rook counts for 5
– a knight counts for 3
...



A weighted linear evaluation function

number of pawns on the board

number of knights on the board

A pawn counts for 1

A knight counts for 3

Eval = 3-2.5=0.5 Eval = 3+2.5+1+1-2.5 = 5



A weighted linear evaluation function

number of pawns on the board

number of knights on the board

A pawn counts for 1

A knight counts for 3

Eval = 3-2.5=0.5 Eval = 3+2.5+1+1-2.5 = 5

Maybe consider other 
factors as well?



Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search

Instead, search only to a limited depth in the tree

Replace terminal utilities with an evaluation function for non-terminal 
positions

Example:

Suppose we have 100 seconds

Can explore 10K nodes / sec

So can check 1M nodes per move

Guarantee of optimal play is gone

More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

Evaluation functions



At what depth do you run the evaluation function?

Option 1: cut off search at a fixed depth

Option 2: cut off search at particular 
states deeper than a certain threshold

The deeper your threshold, the less the 
quality of the evaluation function 
matters...

1

-5 -6

-6

3 1

1



Alpha/Beta pruning



Alpha/Beta pruning

3 812

3



Alpha/Beta pruning

3 812

3



Alpha/Beta pruning

3 812 2

3



Alpha/Beta pruning

3 812 2 4

3



Alpha/Beta pruning

3 812 2 4

3
We don't need to expand this node!



Alpha/Beta pruning

3 812 2 4

3
We don't need to expand this node!

Why?



Alpha/Beta pruning

3 812 2 4

3
We don't need to expand this node!

Why?

Max

Min



Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3



Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3

So, we don't need to expand these nodes 
in order to back up correct values!



Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3

So, we don't need to expand these nodes 
in order to back up correct values!

That's alpha-beta 
pruning.



def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, 
α, β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, 
value(successor, α, β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root

β: MIN’s best option on path to root

Alpha/Beta pruning: algorithm



Alpha/Beta pruning

(-inf,+inf)



Alpha/Beta pruning

(-inf,+inf)

(-inf,+inf)



Alpha/Beta pruning

3

3

(-inf,+inf)

(-inf,3)

Best value for far for 
MIN along path to root



Alpha/Beta pruning

3 12

3

(-inf,+inf)

(-inf,3)

Best value for far for 
MIN along path to root



Alpha/Beta pruning

3 812

3

(-inf,+inf)

(-inf,3)

Best value for far for 
MIN along path to root



Alpha/Beta pruning

3 812

3

(3,+inf)

(-inf,3)

Best value for far for 
MAX along path to root



Alpha/Beta pruning

3 812

3

(3,+inf)

(-inf,3) (3,+inf)



Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2



Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

Prune because value 
(2) is out of alpha-beta 
range



Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

(3,+inf)



Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

14(3,14)

14



Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

5(3,5)

14 5



Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

2(3,5)

14 5 2



Alpha/Beta algorithm



Alpha/Beta properties

Is it complete?



Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = 

Alpha/beta time complexity >= 

– the improvement w/ alpha/beta depends upon move ordering...



Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = 

Alpha/beta time complexity >= 

– the improvement w/ alpha/beta depends upon move ordering...

3 812 2 64 14 25

3 2 2

3The order in which we expand a node.



Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = 

Alpha/beta time complexity >= 

– the improvement w/ alpha/beta depends upon move ordering...

3 812 2 64 14 25

3 2 2

3The order in which we expand a node.

How to choose move ordering? Use IDS.
– on each iteration of IDS, use prior run to inform ordering of next node expansions.



Expectimax

10 10 9 100

?

What if your opponent does not maximize his/her utility?
– e.g. suppose he/she picks moves uniformly at random?

Max
(you)

Min
(them)

Max
(you)



Expectimax

10 10 9 100

10 9

Minimax backup for a rational agent:

Max
(you)

Min
(them)

Max
(you)



Expectimax

10 10 9 100

10 54.5

Minimax backup for agent who selects actions uniformly at random:

Max
(you)

Min
(them)

Max
(you)



Expectimax

10 10 9 100

10 54.5

Minimax backup for agent who selects actions uniformly at random:

Max
(you)

Min
(them)

Max
(you)

Instead of backing up min values for min-plys, back up the average
– could also account for agents who are somewhere in between rational 

and uniformly random. How?
– later, this idea will be generalized using Markov Decision Processes



Backgammon N
ondeterm

inistic
gam

es:
backgam

m
on

1
2

3
4

5
6

7
8

9
10

11
12

24
23

22
21

20
19

18
17

16
15

14
13

025

Chapter6
25

Mixing these ideas: Nondeterministic games



In nondeterministic games, chance introduced by dice, 
card-shuffling 

Simplified example with coin-flipping: 

Nondeterministic games in general

Nondeterministic games in general

In nondeterministic games, chanceintroduced bydice, card-shuffling

Simplified examplewith coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

Chapter 6 26

max

min

chance


	Adversarial Search Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

