

Reinforcement Learning

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

Conception of agent

Agent World

act

sense

RL conception of agent

Agent World

a

s,r

Agent takes actions

Agent perceives states and rewards

Transition model and reward function are initially unknown to the agent!
– value iteration assumed knowledge of these two things...

Value iteration

We know the probabilities of moving in
each direction when an action is executed

We know the reward function

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Reinforcement Learning

We know the probabilities of moving in
each direction when an action is executed

We know the reward function

Image: Berkeley CS188 course notes (downloaded Summer 2015)

The different between RL and value iteration

Offline Solution
(value iteration)

Online Learning
(RL)

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration vs RL

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

RL still assumes that we have an MDP

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration vs RL

Cool

Warm

Overheated

RL still assumes that we have an MDP
– but, we assume we don't know T or R

Image: Berkeley CS188 course notes (downloaded Summer 2015)

RL example

https://www.youtube.com/watch?v=goqWX7bC-ZY

Model-based RL

1. estimate T, R by
averaging experiences

2. solve for policy using
value iteration

a. choose an exploration policy
– policy that enables

agent to explore all
relevant states

b. follow policy for a while

c. estimate T and R

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Model-based RL

1. estimate T, R by
averaging experiences

2. solve for policy using
value iteration

a. choose an exploration policy
– policy that enables

agent to explore all
relevant states

b. follow policy for a while

c. estimate T and R

Number of times agent reached s' by taking a from s

Set of rewards obtained when reaching s' by taking a from s

Model-based RL

1. estimate T, R by
averaging experiences

2. solve for policy using
value iteration

a. choose an exploration policy
– policy that enables

agent to explore all
relevant states

b. follow policy for a while

c. estimate T and R

Number of times agent reached s' by taking a from s

Set of rewards obtained when reaching s' by taking a from s

What's wrong w/ this approach?

Model-based vs Model-free learning

Goal: Compute expected age of students in this class

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known
P(A)

Why does this
work? Because
samples
appear with
the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

RL: model-free learning approach to estimating the
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and
average

(s)

s

s, (s)

s1'

RL: model-free learning approach to estimating the
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and
average

(s)

s

s, (s)

s1's2'

RL: model-free learning approach to estimating the
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and
average

(s)

s

s, (s)

s1's2' s3'

RL: model-free learning approach to estimating the
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and
average

(s)

s

s, (s)

s1's2' s3'

Sidebar: exponential moving average

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Exponential moving average
 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)

TD Value Learning

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Big idea: learn from every experience!
 Update V(s) each time we experience a

transition (s, a, s’, r)
 Likely outcomes s’ will contribute updates

more often

 Temporal difference learning of values
 Policy still fixed, still doing evaluation!
 Move values toward value of whatever

successor occurs: running average

(s)

s

s, (s)

Sample of V(s):

Update to V(s):

Same update:

s'

TD Value Learning: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Assume: = 1,
α = 1/2

Observed
Transitions

0

0 0 8

0

A

B C D

E

States

TD Value Learning: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Assume: = 1,
α = 1/2

Observed
Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

A

B C D

E

States
Observed reward

TD Value Learning: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Assume: = 1,
α = 1/2

Observed
Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States
Observed reward

What's the problem w/ TD Value Learning?

What's the problem w/ TD Value Learning?

Can't turn the estimated value function into a policy!

This is how we did it when we were using value
iteration:

Why can't we do this now?

What's the problem w/ TD Value Learning?

Can't turn the estimated value function into a policy!

This is how we did it when we were using value
iteration:

Why can't we do this now?

Solution: Use TD value learning to estimate Q*, not V*

Detour: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Q-Learning

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Exploration v exploitation

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Exploration v exploitation: e-greedy action
selection

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Several schemes for forcing exploration
 Simplest: random actions (-greedy)

 Every time step, flip a coin
 With (small) probability , act randomly
 With (large) probability 1-, act on current

policy

 Problems with random actions?
 You do eventually explore the space, but keep

thrashing around once learning is done
 One solution: lower over time
 Another solution: exploration functions

Generalizing across states

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in

memory

 Instead, we want to generalize:
 Learn about some small number of training

states from experience
 Generalize that experience to new, similar

situations
 This is a fundamental idea in machine learning,

and we’ll see it over and over again

Generalizing across states

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Let’s say we
discover through
experience that
this state is bad:

In naïve q-
learning, we
know nothing

about this state:

Or even this
one!

Feature-based representations

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Solution: describe a state using a vector of
features (properties)
 Features are functions from states to

real numbers (often 0/1) that capture
important properties of the state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with
features (e.g. action moves closer to
food)

Linear value functions

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Using a feature representation, we can write a q function (or
value function) for any state using a few weights:

 Advantage: our experience is summed up in a few powerful
numbers

 Disadvantage: states may share features but actually be very
different in value!

Linear value functions

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features

that were on: disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Q-Learning and Least Squares

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Q-Learning and Least Squares

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

0
10

20
30

40

0
10

20
30

20

22

24

26

Prediction:

0 200

20

40

Prediction:

Optimization: Least Squares

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Approximate q update
explained:

Imagine we had only one point x, with features f(x), target value
y, and weights w:

“target” “prediction”

Gradient descent

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

