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Conception of agent

Agent World

act

sense



  

RL conception of agent

Agent World

a

s,r

Agent takes actions

Agent perceives states and rewards

Transition model and reward function are initially unknown to the agent!
– value iteration assumed knowledge of these two things...



  

Value iteration

We know the probabilities of moving in 
each direction when an action is executed

We know the reward function

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Reinforcement Learning

We know the probabilities of moving in 
each direction when an action is executed

We know the reward function
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The different between RL and value iteration

Offline Solution
(value iteration)

Online Learning
(RL)

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Value iteration vs RL
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RL still assumes that we have an MDP
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Value iteration vs RL

Cool

Warm

Overheated

RL still assumes that we have an MDP
– but, we assume we don't know T or R

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

RL example

https://www.youtube.com/watch?v=goqWX7bC-ZY



  

Model-based RL

1. estimate T, R by 
averaging experiences

2. solve for policy using 
value iteration

a. choose an exploration policy
– policy that enables 

agent to explore all 
relevant states

b. follow policy for a while

c. estimate T and R

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Model-based RL

1. estimate T, R by 
averaging experiences

2. solve for policy using 
value iteration

a. choose an exploration policy
– policy that enables 

agent to explore all 
relevant states

b. follow policy for a while

c. estimate T and R

Number of times agent reached s' by taking a from s

Set of rewards obtained when reaching s' by taking a from s



  

Model-based RL

1. estimate T, R by 
averaging experiences

2. solve for policy using 
value iteration

a. choose an exploration policy
– policy that enables 

agent to explore all 
relevant states

b. follow policy for a while

c. estimate T and R

Number of times agent reached s' by taking a from s

Set of rewards obtained when reaching s' by taking a from s

What's wrong w/ this approach?



  

Model-based vs Model-free learning

Goal: Compute expected age of students in this class

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known 
P(A)

Why does this 
work?  Because 
samples 
appear with 
the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

RL: model-free learning approach to estimating the 
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

(s)

s

s, (s)

s1'



  

RL: model-free learning approach to estimating the 
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

(s)

s

s, (s)

s1's2'



  

RL: model-free learning approach to estimating the 
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

(s)

s

s, (s)

s1's2' s3'



  

RL: model-free learning approach to estimating the 
value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

(s)

s

s, (s)

s1's2' s3'



  

Sidebar: exponential moving average

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Exponential moving average 
 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)



  

TD Value Learning

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Big idea: learn from every experience!
 Update V(s) each time we experience a 

transition (s, a, s’, r)
 Likely outcomes s’ will contribute updates 

more often

 Temporal difference learning of values
 Policy still fixed, still doing evaluation!
 Move values toward value of whatever 

successor occurs: running average

(s)

s

s, (s)

Sample of V(s):

Update to V(s):

Same update:

s'



  

TD Value Learning: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Assume:  = 1, 
α = 1/2

Observed 
Transitions

0

0 0 8

0

A

B C D

E

States



  

TD Value Learning: example
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Assume:  = 1, 
α = 1/2

Observed 
Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

A

B C D

E

States
Observed reward



  

TD Value Learning: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Assume:  = 1, 
α = 1/2

Observed 
Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States
Observed reward



  

What's the problem w/ TD Value Learning?



  

What's the problem w/ TD Value Learning?

Can't turn the estimated value function into a policy!

This is how we did it when we were using value 
iteration:

Why can't we do this now?



  

What's the problem w/ TD Value Learning?

Can't turn the estimated value function into a policy!

This is how we did it when we were using value 
iteration:

Why can't we do this now?

Solution: Use TD value learning to estimate Q*, not V*



  

Detour: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Q-Learning

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:



  

Exploration v exploitation

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Exploration v exploitation: e-greedy action 
selection

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Several schemes for forcing exploration
 Simplest: random actions (-greedy)

 Every time step, flip a coin
 With (small) probability , act randomly
 With (large) probability 1-, act on current 

policy

 Problems with random actions?
 You do eventually explore the space, but keep 

thrashing around once learning is done
 One solution: lower  over time
 Another solution: exploration functions



  

Generalizing across states

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn 
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in 

memory

 Instead, we want to generalize:
 Learn about some small number of training 

states from experience
 Generalize that experience to new, similar 

situations
 This is a fundamental idea in machine learning, 

and we’ll see it over and over again



  

Generalizing across states

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Let’s say we 
discover through 
experience that 
this state is bad:

In naïve q-
learning, we 
know nothing 

about this state:

Or even this 
one!



  

Feature-based representations

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Solution: describe a state using a vector of 
features (properties)
 Features are functions from states to 

real numbers (often 0/1) that capture 
important properties of the state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with 
features (e.g. action moves closer to 
food)



  

Linear value functions

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Using a feature representation, we can write a q function (or 
value function) for any state using a few weights:

 Advantage: our experience is summed up in a few powerful 
numbers

 Disadvantage: states may share features but actually be very 
different in value!



  

Linear value functions

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features 

that were on: disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s



  

Example: Q-Pacman

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Q-Learning and Least Squares

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Q-Learning and Least Squares

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
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Optimization: Least Squares

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

0 20
0

Error or “residual”

Prediction

Observation



  

Minimizing Error

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Approximate q update 
explained:

Imagine we had only one point x, with features f(x), target value 
y, and weights w:

“target” “prediction”

Gradient descent
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