Basic Probability

Robert Platt
Northeastern University
Some images and slides are used from:

1. CS188 UC Berkeley
2. RN, AIMA

Definition

- Probability theory is nothing but common sense reduced to calculation. \sim Pierre Laplace
- What is probability? What does it mean when we say "the probability that a coin will land head is 0.5 "

Frequentist Vs Bayesian

DID THE SUN JUST EXPLODE?
(TSS NGHT, SO WERE NOT SURE.)

FREQUENTIST STATISTICIAN:
BAYESIAN STATISTICIAN:

Random variables

What is a random variable?

Suppose that the variable a denotes the outcome of a role of a single six-sided die:

a is a random variable
this is the domain of a

Another example:
Suppose b denotes whether it is raining or clear outside:

$$
b \in\{\text { rain, clear }\}=B
$$

Probability distribution

A probability distribution associates each with a probability of occurrence.
A probability table is one way to encode the distribution:

$$
a \in\{1,2,3,4,5,6\}=A \quad b \in\{\text { rain }, \text { clear }\}=B
$$

a	$\mathrm{P}(\mathrm{a})$
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

b	$\mathrm{P}(\mathrm{b})$
rain	$1 / 4$
clear	$3 / 4$

All probability distributions must satisfy the following:

1. $\forall a \in A, a \geq 0$
2. $\sum_{a \in A}, a=1$

Writing probabilities

a	$\mathrm{P}(\mathrm{a})$
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

b	$\mathrm{P}(\mathrm{b})$
rain	$1 / 4$
clear	$3 / 4$

For example: $\quad p(a=2)=1 / 6$

$$
p(b=c l e a r)=3 / 4
$$

But, sometimes we will abbreviate this as: $\quad p(2)=1 / 6$

$$
p(\text { clear })=3 / 4
$$

Joint probability distributions

Given random variables: $X_{1}, X_{2}, \ldots, X_{n}$
The joint distribution is a probability assignment to all combinations:

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

$$
\text { or: } \quad P\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

As with single-variate distributions, joint distributions must satisfy:

1. $\quad P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0$
2. $\sum_{x_{1}, \ldots, x_{n}} P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$

Joint probability distributions

Joint distributions are typically written in table form:

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginalization

Given $P(T, W)$, calculate $P(T)$ or $P(W)$...

			$P(T)=\sum_{w \in W} P(T, w)$	T	$\mathrm{P}(\mathrm{T})$	
			hot	0.5		
T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$		cold	0.5	
hot	sun	0.4		$P(W)=\sum_{t \in T} P(t, W)$		
hot	rain	0.1				
cold	sun	0.2	W		P(W)	
cold	rain	0.3	sun		0.5	
			rain		0.4	

Marginalization

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Conditional Probabilities

$$
P(\operatorname{sun} \mid h o t) \equiv \quad \text { Probability that it is sunny given that it is hot. }
$$

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Probabilities

Calculate the conditional probability using the product rule:

Product rule

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
P(W & =s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
& =P(W=s, T=c)+P(W=r, T=c) \\
& =0.2+0.3=0.5
\end{aligned}
$$

Conditional Probabilities

- $P(+x \mid+y)$?

$$
P(X, Y)
$$

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

- $P(-x \mid+y)$?
- $P(-y \mid+x)$?

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
P(W \mid t)=\frac{P(W, t)}{P(t)}
$$

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
P(W \mid t)=\frac{P(W, t)}{P(t)}
$$

$$
\begin{aligned}
P(\text { sun } \mid \text { hot })=\frac{P(\text { sun }, \text { hot })}{P(\text { hot })} & =\frac{P(\text { sun }, \text { hot })}{P(\text { sun }, \text { hot })+P(\text { rain }, \text { hot })} \\
& =\frac{0.4}{0.4+0.1}
\end{aligned}
$$

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t}) \ldots$

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional distribution

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

-	W	$\mathrm{P}(\mathrm{W} \mid t=h o t)$
	sun	0.8
	rain	0.2
$P(W \mid t)=\frac{P(W, t)}{P(t)}$		
	W	$\mathrm{P}(\mathrm{W} \mid t=$ cold $)$
	sun	0.4
	rain	0.6

$$
\begin{aligned}
P(\text { sun } \mid \text { cold })=\frac{P(\text { sun }, \text { cold })}{P(\text { cold })} & =\frac{P(\text { sun }, \text { cold })}{P(\text { sun }, \text { cold })+P(\text { rain }, \text { cold })} \\
& =\frac{0.2}{0.2+0.3}
\end{aligned}
$$

Normalization

Given $\mathrm{P}(\mathrm{T}, \mathrm{W})$, calculate $\mathrm{P}(\mathrm{T} \mid \mathrm{w})$ or $\mathrm{P}(\mathrm{W} \mid \mathrm{t})$...

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Select corresponding elts from the joint distribution

Scale the numbers so that they sum to 1 .

$$
P(\text { sun } \mid \text { cold })=\frac{P(\text { sun }, \text { cold })}{P(\text { cold })}=\frac{P(\text { sun }, \text { cold })}{P(\text { sun }, \text { cold })+P(\text { rain }, \text { cold })}
$$

Normalization

T	W	$\mathrm{P}(\mathrm{T}, \mathrm{W})$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Select corresponding elts from the joint distribution

Scale the numbers so that they sum to 1 .

$$
P(\operatorname{sun} \mid \operatorname{cold})=\frac{P(\operatorname{sun}, \operatorname{cold})}{P(\operatorname{cold})}=\frac{P(\operatorname{sun}, \operatorname{cold})}{\underline{P(\text { sun })} \text { cold })+P(\text { rain }, \text { cold })}
$$

The only purpose of this denominator is to make the distribution sum to one.

- we achieve the same thing by scaling.

Normalization

$$
P(X \mid Y=-y) ?
$$

$P(X, Y)$

x	y	p
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

Bayes Rule

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

Bayes Rule

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

It's easy to derive from the product rule:

$$
P(a, b)=P(b \mid a) P(a)=\underbrace{P(a \mid b)} P(b)
$$

Solve for this

Using Bayes Rule

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

$$
P(\text { cause } \mid e f f e c t)=\frac{P(e f f e c t \mid \text { cause }) P(\text { cause })}{P(e f f e c t)}
$$

Using Bayes Rule

$$
\begin{gathered}
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)} \\
P(\text { cause } \mid \text { effect })=\frac{:-\cdots(e f f e c t \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
\end{gathered}
$$

It's often easier to estimate this

Bayes Rule Example

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(e f f e c t)}
$$

Suppose you have a stiff neck...
Suppose there is a 70% chance of meningitis if you have a stiff neck:

$$
\text { stiff neck } \quad \text { meningitis }
$$

What are the chances that you have meningitis?

Bayes Rule Example

$$
P(\text { cause } \mid e f f e c t)=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

Suppose you have a stiff neck...
Suppose there is a 70% chance of meningitis if you have a stiff neck:

> stiff neck meningitis

$$
P\left(s \mid m^{\prime}\right)=0.7
$$

What are the chances that you have meningitis?

We need a little more information...

Bayes Rule Example

$$
\begin{aligned}
& P(\text { cause } \mid e f f e c t)=\frac{P(e f f e c t \mid c a u s e) P(c a u s e)}{P(e f f e c t)} \\
& P(s \mid m)=0.7 \\
& P(s)=0.01 \\
& P(m)=\frac{1}{50000} \quad \text { Prior probability of stiff neck } \\
& P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.7 \times \frac{1}{50000}}{0.01}=0.0014
\end{aligned}
$$

Bayes Rule Example

$$
\begin{aligned}
& P(\text { cause } \mid e f f e c t)=\frac{P(e f f e c t \mid c a u s e) P(c a u s e)}{P(e f f e c t)} \\
& P(s \mid m)=0.7 \\
& P(s)=0.01 \\
& P(m)=\frac{1}{50000} \quad \text { Prior probability of stiff neck } \\
& P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.7 \times \frac{1}{50000}}{0.01}=0.0014
\end{aligned}
$$

Bayes Rule Example

- Given:
$P(D \mid W)$

D	W	P
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

- What is P(W | dry) ?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

