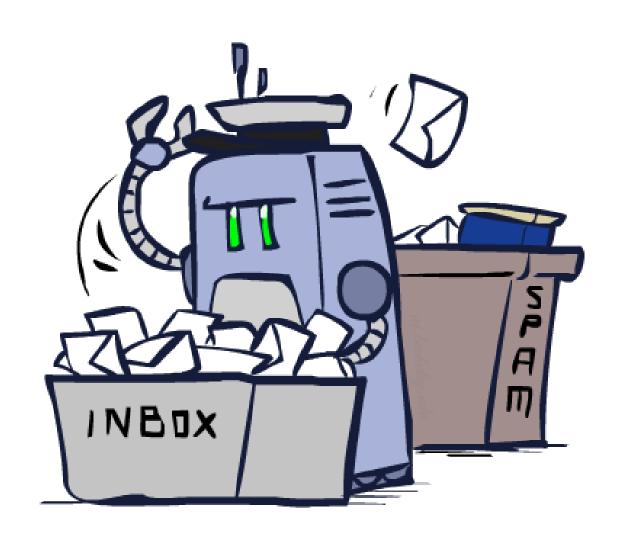
### Naive Bayes

Robert Platt Northeastern University

All slides in this file are adapted from CS188 UC Berkeley

### Classification



## Example: Spam Filter

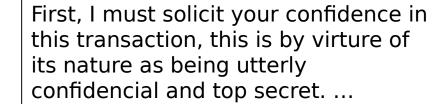
Input: an email

Output: spam/ham

#### Setup:

- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails
- Features: The attributes used to make the ham / spam decision
  - Words: FREE!
  - Text Patterns: \$dd, CAPS
  - Non-text: SenderInContacts
  - **-** ...







TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99



Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

## Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:
  - Get a large collection of example images, each labeled with a digit
  - Note: someone has to hand label all this data!
  - Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision

??

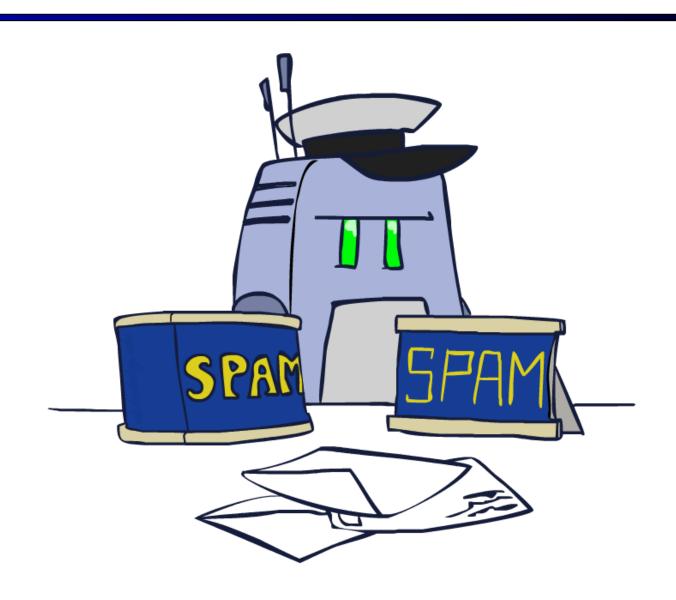
- Pixels: (6,8)=ON
- Shape Patterns: NumComponents, AspectRatio, NumLoops
- ...

#### Other Classification Tasks

- Classification: given inputs x, predict labels (classes) y
- Examples:
  - Spam detection (input: document, classes: spam / ham)
  - OCR (input: images, classes: characters)
  - Medical diagnosis (input: symptoms, classes: diseases)
  - Automatic essay grading (input: document, classes: grades)
  - Fraud detection (input: account activity, classes: fraud / no fraud)
  - Customer service email routing
  - ... many more
- Classification is an important commercial technology!



### Model-Based Classification



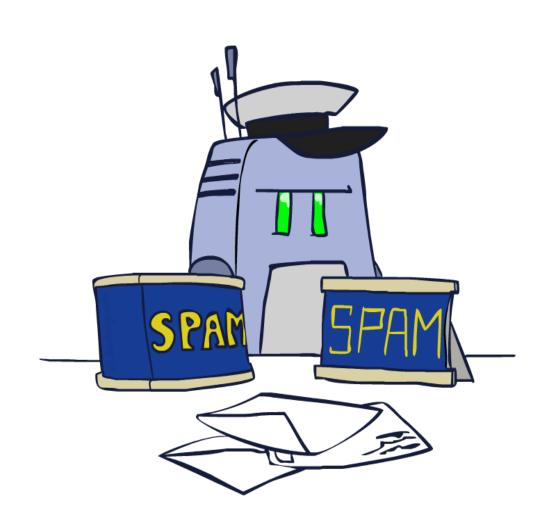
#### Model-Based Classification

#### Model-based approach

- Build a model (e.g. Bayes' net) where both the label and features are random variables
- Instantiate any observed features
- Query for the distribution of the label conditioned on the features

#### Challenges

- What structure should the BN have?
- How should we learn its parameters?

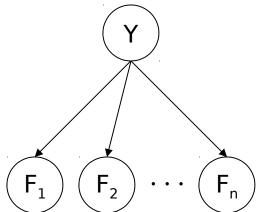


## Naïve Bayes for Digits

- Naïve Bayes: Assume all features are independent effects of the label
- Simple digit recognition version:
  - One feature (variable)  $F_{ij}$  for each grid position  $\langle i,j \rangle$
  - Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
  - Each input maps to a feature vector, e.g.

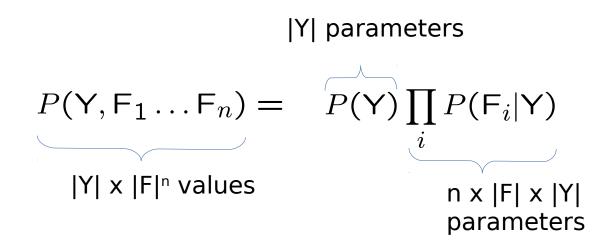
$$Arr VF_{0,0} = 0 \quad F_{0,1} = 0 \quad F_{0,2} = 1 \quad F_{0,3} = 1 \quad F_{0,4} = 0 \quad \dots F_{15,15} = 0$$

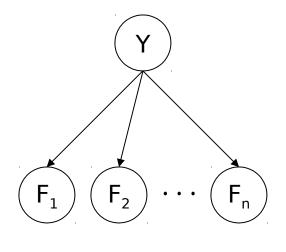
- Here: lots of features, each is binary valued
- Naïve Bayes model:  $P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod P(F_{i,j}|Y)$
- What do we need to learn?



## General Naïve Bayes

A general Naive Bayes model:



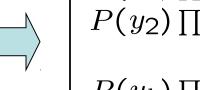


- We only have to specify how each feature depends on the class
- Total number of parameters is *linear* in n
- Model is very simplistic, but often works anyway

## Inference for Naïve Bayes

- Goal: compute posterior distribution over label variable Y
  - Step 1: get joint probability of label and evidence for each label

each label 
$$P(Y,f_1\dots f_n) = \begin{bmatrix} P(y_1,f_1\dots f_n) \\ P(y_2,f_1\dots f_n) \\ \vdots \\ P(y_k,f_1\dots f_n) \end{bmatrix} \qquad \begin{bmatrix} P(y_1)\prod_i P(f_i|y_1) \\ P(y_2)\prod_i P(f_i|y_2) \\ \vdots \\ P(y_k)\prod_i P(f_i|y_k) \end{bmatrix}$$



Step 2: sum to get probability of evidence



 $P(f_1 \ldots f_n)$ 

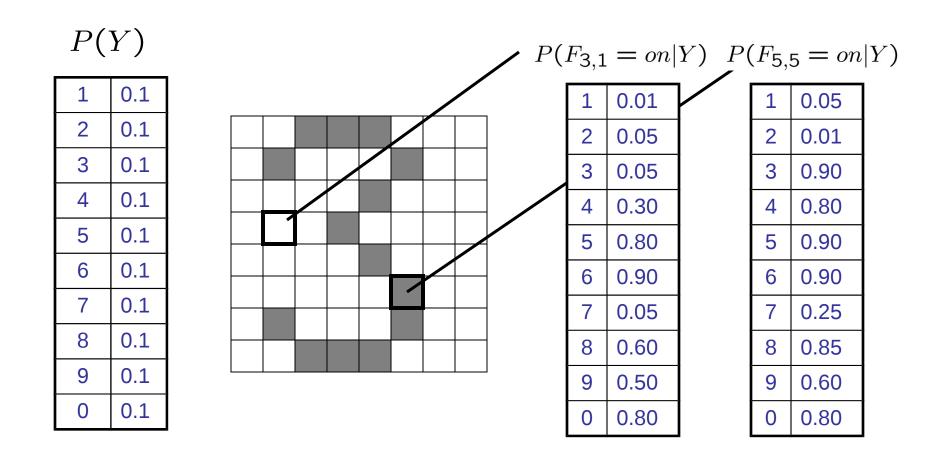
Step 3: normalize by dividing Step 1 by Step 2

$$P(Y|f_1\ldots f_n)$$

## General Naïve Bayes

- What do we need in order to use Naïve Bayes?
  - Inference method (we just saw this part)
    - Start with a bunch of probabilities: P(Y) and the P(F<sub>i</sub>|Y) tables
    - Use standard inference to compute  $P(Y|F_1...F_n)$
    - Nothing new here
  - Estimates of local conditional probability tables
    - P(Y), the prior over labels
    - P(F<sub>i</sub>|Y) for each feature (evidence variable)
    - These probabilities are collectively called the *parameters* of the model and denoted by  $\theta$
    - Up until now, we assumed these appeared by magic, but...
    - ...they typically come from training data counts: we'll look at this soon

### Example: Conditional Probabilities



## Naïve Bayes for Text

- Bag-of-words Naïve Bayes:
  - Features: W<sub>i</sub> is the word at positon i
  - As before: predict label conditioned on feature variables (spam vs. ham)
  - As before: assume features are conditionally independent given label
  - New: each W<sub>i</sub> is identically distributed
- Generative model:  $P(Y, W_1 \dots W_n) = P(Y) \prod_i P(W_i | Y)$

Word at position i, not ith word in the dictionary!

- "Tied" distributions and bag-of-words
  - Usually, each variable gets its own conditional probability distribution P(F|Y)
  - In a bag-of-words model
    - Each position is identically distributed
    - All positions share the same conditional probs P(W|Y)
    - Why make this assumption?
  - Called "bag-of-words" because model is insensitive to word order or reordering

## Example: Spam Filtering

- Model:  $P(Y, W_1 ... W_n) = P(Y) \prod_i P(W_i | Y)$
- What are the parameters?

ham: 0.66 spam: 0.33

#### P(W|spam)

the: 0.0156
to: 0.0153
and: 0.0115
of: 0.0095
you: 0.0093
a: 0.0086
with: 0.0080
from: 0.0075

#### $P(W|\mathsf{ham})$

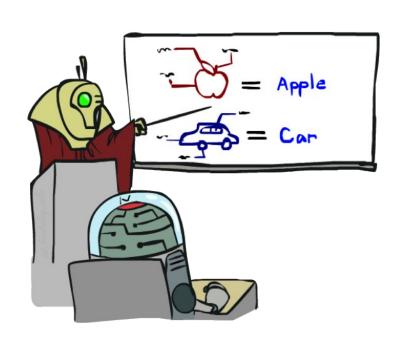
the: 0.0210 to: 0.0133 of: 0.0119 2002: 0.0110 with: 0.0108 from: 0.0107 and: 0.0105 a: 0.0100

Where do these tables come from?

# Spam Example

| Word    | P(w spam) | P(w ham) | Tot Spam | Tot Ham |
|---------|-----------|----------|----------|---------|
| (prior) | 0.33333   | 0.66666  | -1.1     | -0.4    |
| Gary    | 0.00002   | 0.00021  | -11.8    | -8.9    |
| would   | 0.00069   | 0.00084  | -19.1    | -16.0   |
| you     | 0.00881   | 0.00304  | -23.8    | -21.8   |
| like    | 0.00086   | 0.00083  | -30.9    | -28.9   |
| to      | 0.01517   | 0.01339  | -35.1    | -33.2   |
| lose    | 0.00008   | 0.00002  | -44.5    | -44.0   |
| weight  | 0.00016   | 0.00002  | -53.3    | -55.0   |
| while   | 0.00027   | 0.00027  | -61.5    | -63.2   |
| you     | 0.00881   | 0.00304  | -66.2    | -69.0   |
| sleep   | 0.00006   | 0.00001  | -76.0    | -80.5   |

# Training and Testing







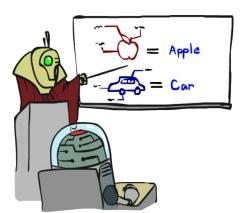
### Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
  - Training set
  - Held out set
  - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
  - Learn parameters (e.g. model probabilities) on training set
  - (Tune hyperparameters on held-out set)
  - Compute accuracy of test set
  - Very important: never "peek" at the test set!
- Evaluation
  - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
  - Want a classifier which does well on test data
  - Overfitting: fitting the training data very closely, but not generalizing well

Training Data

Held-Out Data

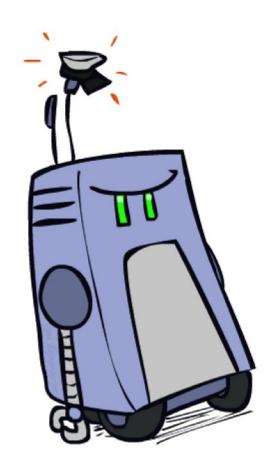
> Test Data

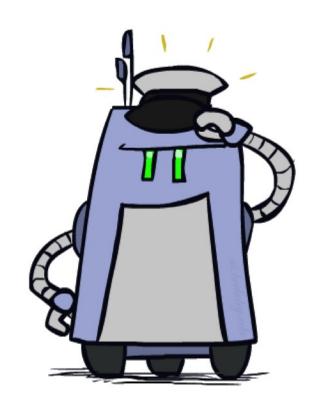






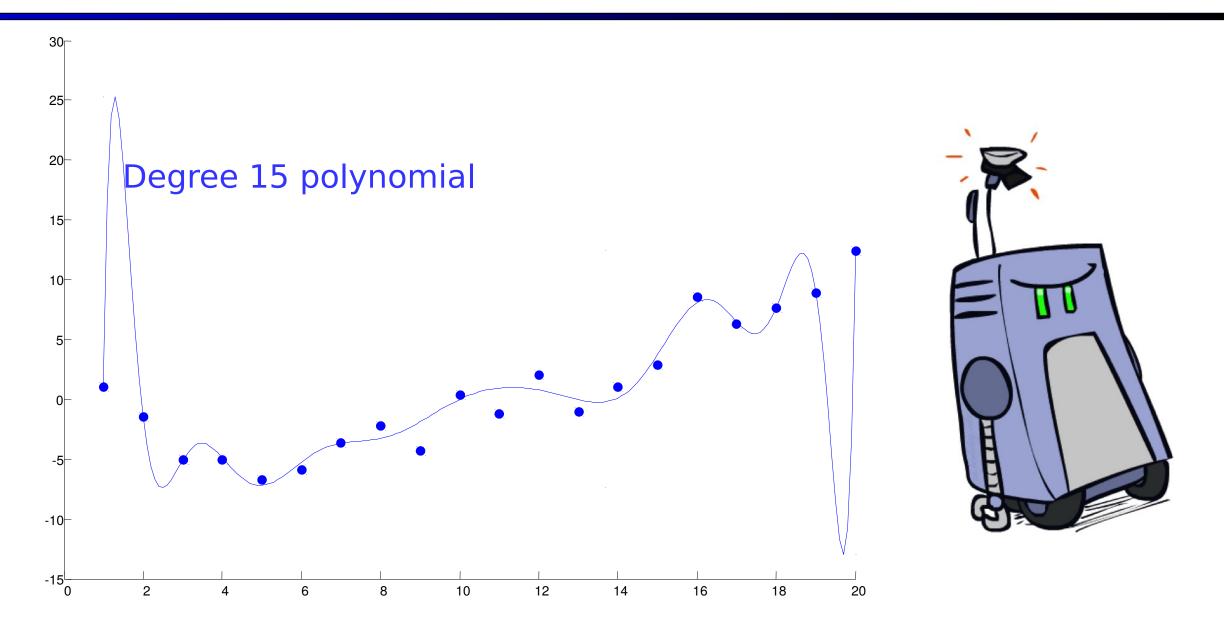
# Generalization and Overfitting







# Overfitting



# Example: Overfitting



$$P(C = 2) = 0.1$$

$$P(\text{on}|C=2) = 0.8$$

P(on|C=2) = 0.1

P(off|C=2) = 0.1

P(on|C=2) = 0.01



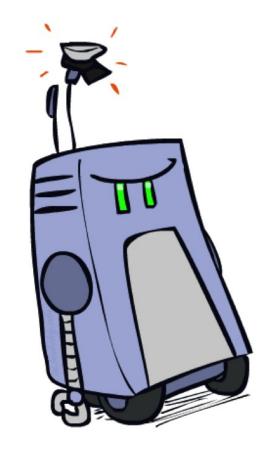
$$P(C = 3) = 0.1$$

$$P(\mathsf{on}|C=3)=0.8$$

$$-P(\text{on}|C=3)=0.9$$

$$P(\text{off}|C=3)=0.7$$

$$-P(\text{on}|C=3)=0.0$$



2 wins!!

# Example: Overfitting

Posteriors determined by relative probabilities (odds ratios):

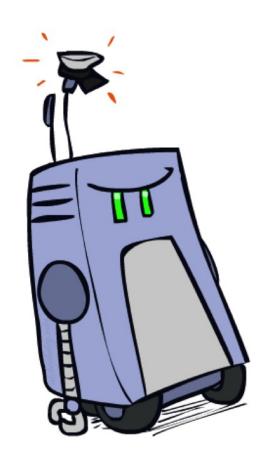
$$\frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})}$$

```
\frac{P(W|\text{spam})}{P(W|\text{ham})}
```

```
south-west : inf
nation : inf
morally : inf
nicely : inf
extent : inf
seriously : inf
```

. . .

```
screens : inf
minute : inf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf
```

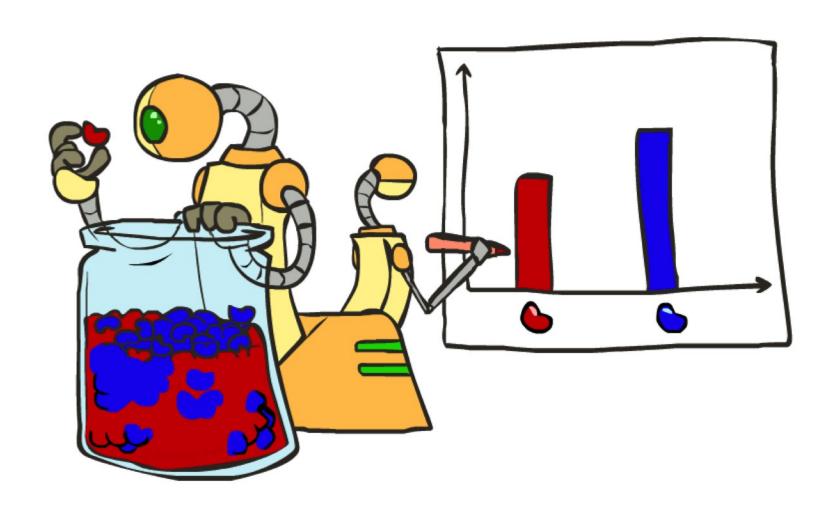


What went wrong here?

## Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
  - Just because we never saw a 3 with pixel (15,15) on during training doesn't mean we won't see it at test time
  - Unlikely that every occurrence of "minute" is 100% spam
  - Unlikely that every occurrence of "seriously" is 100% ham
  - What about all the words that don't occur in the training set at all?
  - In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
  - Would get the training data perfect (if deterministic labeling)
  - Wouldn't generalize at all
  - Just making the bag-of-words assumption gives us some generalization, but isn't enough
- To generalize better: we need to smooth or regularize the estimates

### Parameter Estimation



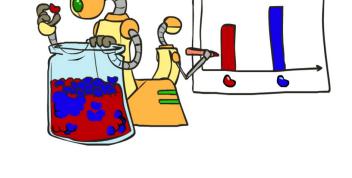
#### Parameter Estimation

- Estimating the distribution of a random variable
- Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)
  - E.g.: for each outcome x, look at the empirical rate of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

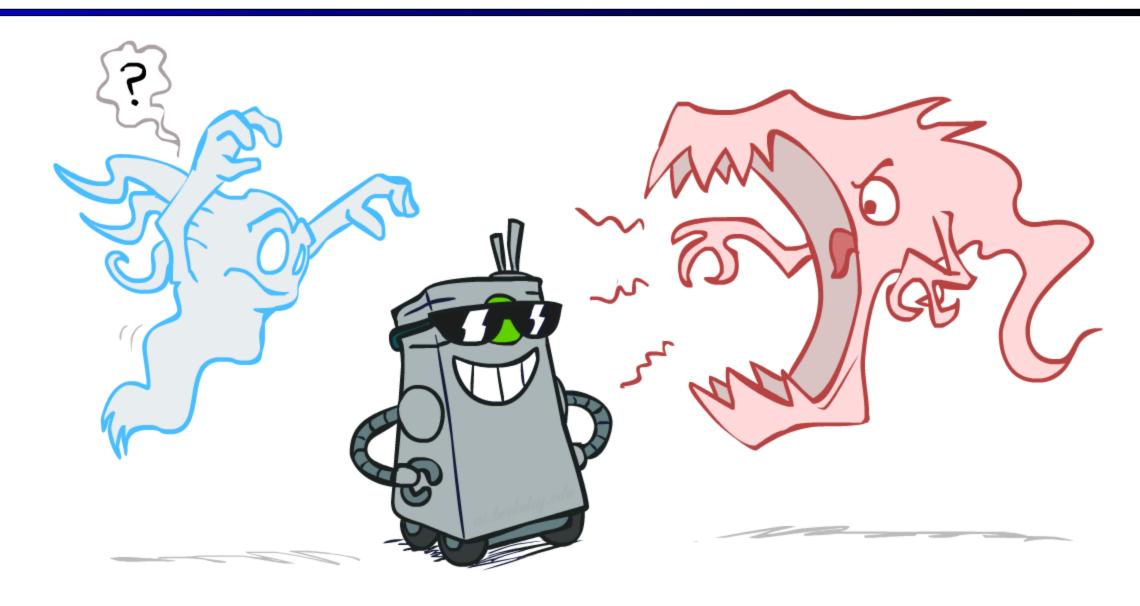


$$P_{\rm ML}({\bf r}) = 2/3$$



• This is the estimate that maximizes the *likelihood of the* data  $L(x,\theta) = \prod P_{\theta}(x_i)$ 

# Smoothing



#### Maximum Likelihood?

Relative frequencies are the maximum likelihood estimates

$$\theta_{ML} = \underset{\theta}{\arg\max} P(\mathbf{X}|\theta)$$

$$= \underset{\theta}{\arg\max} \prod_{i} P_{\theta}(X_{i})$$

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

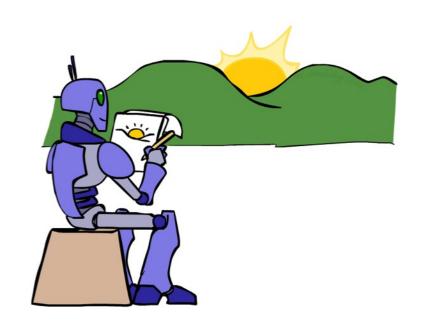
 Another option is to consider the most likely parameter value given the data

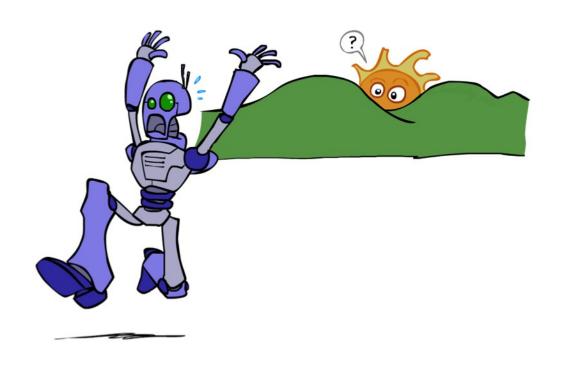
$$\theta_{MAP} = \arg\max_{\theta} P(\theta|\mathbf{X})$$

$$= \arg\max_{\theta} P(\mathbf{X}|\theta)P(\theta)/P(\mathbf{X})$$

$$= \arg\max_{\theta} P(\mathbf{X}|\theta)P(\theta)$$
?????

### **Unseen Events**





# Laplace Smoothing

#### Laplace's estimate:

 Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$
$$= \frac{c(x) + 1}{N + |X|}$$



$$P_{ML}(X) = \left\langle \frac{2}{3}, \frac{1}{3} \right\rangle$$

$$P_{LAP}(X) = \left\langle \frac{3}{5}, \frac{2}{5} \right\rangle$$

Can derive this estimate with Dirichlet priors

# Laplace Smoothing

- Laplace's estimate (extended):
  - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior
- Laplace for conditionals:
  - Smooth each condition independently:  $P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$



$$P_{LAP,0}(X) = \left\langle \frac{2}{3}, \frac{1}{3} \right\rangle$$

$$P_{LAP,1}(X) = \left\langle \frac{3}{5}, \frac{2}{5} \right\rangle$$

$$P_{LAP,100}(X) = \left\langle \frac{102}{203}, \frac{101}{203} \right\rangle$$

## Estimation: Linear Interpolation\*

- In practice, Laplace often performs poorly for P(X|Y):
  - When |X| is very large
  - When |Y| is very large
- Another option: linear interpolation
  - Also get the empirical P(X) from the data
  - Make sure the estimate of P(X|Y) isn't too different from the empirical P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

• What if  $\alpha$  is 0? 1?

### Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

$$\frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})}$$

helvetica : 11.4

seems : 10.8 group : 10.2 ago : 8.4 areas : 8.3

. . .

 $\frac{P(W|\text{spam})}{P(W|\text{ham})}$ 

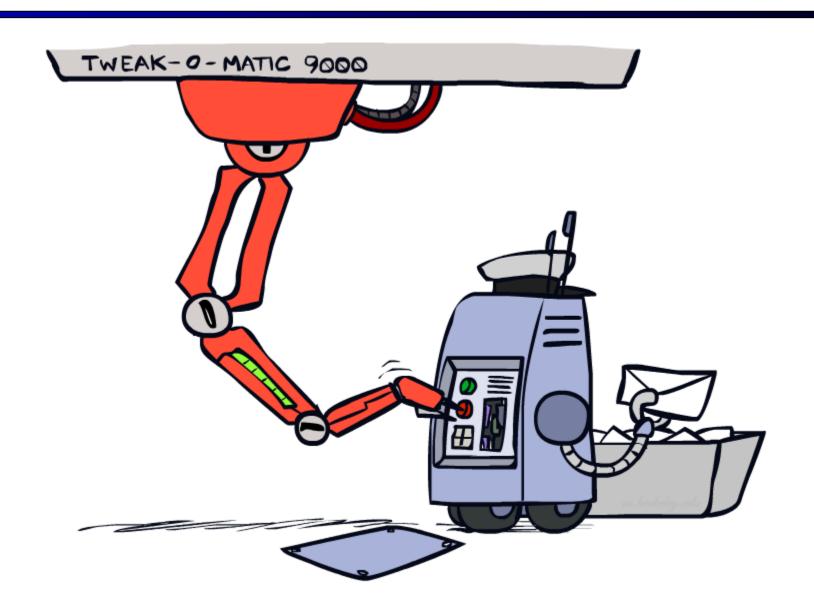
verdana : 28.8
Credit : 28.4
ORDER : 27.2
<FONT> : 26.9
money : 26.5

. . .



Do these make more sense?

# Tuning



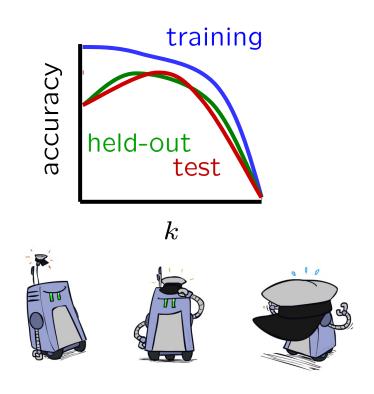
## Tuning on Held-Out Data

#### Now we've got two kinds of unknowns

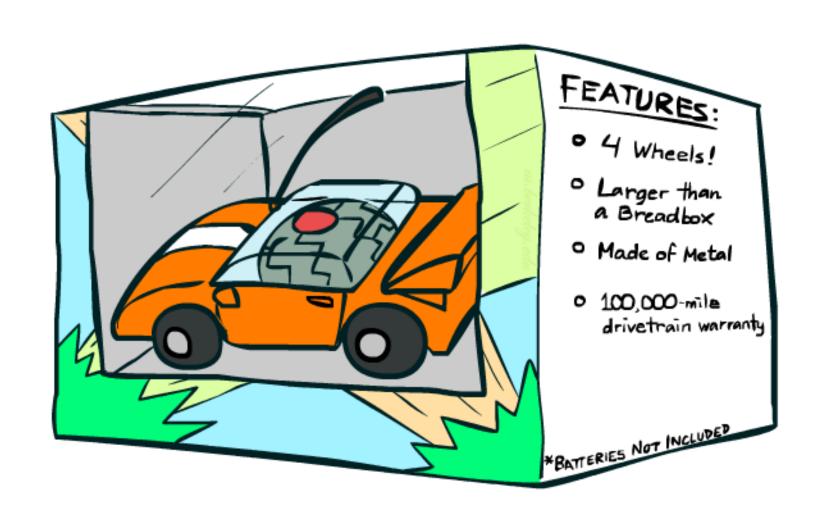
- Parameters: the probabilities P(X|Y), P(Y)
- $\blacksquare$  Hyperparameters: e.g. the amount / type of smoothing to do, k,  $\alpha$

#### • What should we learn where?

- Learn parameters from training data
- Tune hyperparameters on different dataWhy?
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data



### Features



### Errors, and What to Do

#### Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99\* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

#### What to Do About Errors?

- Need more features- words aren't enough!
  - Have you emailed the sender before?
  - Have 1K other people just gotten the same email?
  - Is the sending information consistent?
  - Is the email in ALL CAPS?
  - Do inline URLs point where they say they point?
  - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily



#### Baselines

- First step: get a baseline
  - Baselines are very simple "straw man" procedures
  - Help determine how hard the task is
  - Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
  - Gives all test instances whatever label was most common in the training set
  - E.g. for spam filtering, might label everything as ham
  - Accuracy might be very high if the problem is skewed
  - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

#### Confidences from a Classifier

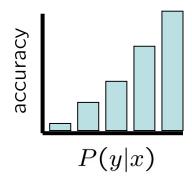
- The confidence of a probabilistic classifier:
  - Posterior over the top label

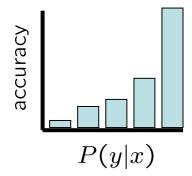
$$confidence(x) = \max_{y} P(y|x)$$

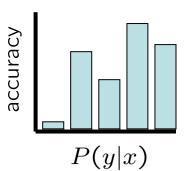
- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

#### Calibration

- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What's the value of calibration?







## Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

# Next Time: Perceptron!