# Markov Decision Processes

Robert Platt Northeastern University

Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

#### Stochastic domains



# Example: stochastic grid world

- A maze-like problem
  - The agent lives in a grid
  - Walls block the agent's path
- Noisy movement: actions do not always go as planned
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10% East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
  - Reward function can be anything. For ex:
    - Small "living" reward each step (can be negative)
    - Big rewards come at the end (good or bad)
- Goal: maximize (discounted) sum of rewards



## Stochastic actions



# The transition function





Transition probabilities:



# The transition function



Transition function: T(s, a, s')



Transition probabilities:

| $\mathbf{S}'$  | $\mathbf{P}(\mathbf{s}' \mid s_1, a)$ |
|----------------|---------------------------------------|
| $\mathbf{S}_2$ | 0.1                                   |
| S <sub>3</sub> | 0.8                                   |
| S <sub>4</sub> | 0.1                                   |

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

M = (S, A, T, R)

State set:  $s \in S$ 

Action Set:  $a \in A$ 

Transition function:  $T: S \times A \times S \rightarrow \mathbb{R}_{>0}$ 

Reward function:  $R:S imes A 
ightarrow \mathbb{R}_{>0}$ 

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

M = (S, A, T, R)

Probability of going from s to s' when executing action a

$$\sum_{s' \in S} T(s, a, s') = 1$$

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

M = (S, A, T, R)

Probability of going from *s* to *s'* when executing action *a* 

$$\sum_{s' \in S} T(s, a, s') = 1$$

But, what is the objective?

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

M = (S, A, T, R)

<u>Objective</u>: calculate a strategy for acting so as to maximize the (discounted) sum of future rewards. – we will calculate a *policy* that will tell us how to act

# Example

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward



# What is a *policy*?

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy  $\pi^*: S \rightarrow A$ 
  - A policy  $\pi$  gives an action for each state
  - An optimal policy is one that maximizes expected utility if followed
  - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
  - It computed the action for a single state only



This policy is optimal when R(s, a, s') = -0.03 for all nonterminal states

# Why is it Markov?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$
  
= 
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$



(1856 - 1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

#### Examples of optimal policies



### How would we solve this using expectimax?



### How would we solve this using expectimax?



Problems w/ this approach:

- how deep do we search?
- how do we deal w/ loops?

# How would we solve this using expectimax?



Problems w/ this approach:

- how deep do we search?
- how do we deal w/ loops?

Is there a better way?



In general: how should we balance amount of reward vs how soon it is obtained?

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially



#### • How to discount?

- Each time we descend a level, we multiply in the discount once
- Why discount?
  - Sooner rewards probably do have higher utility than later rewards
  - Also helps our algorithms converge
- Example: discount of 0.5
  - U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
  - U([1,2,3]) < U([3,2,1])







# Choosing a reward function

#### <u>A few possibilities:</u>

- all reward on goal/firepit
- negative reward everywhere except terminal states
- gradually increasing reward as you approach the goal

#### In general:

 reward can be whatever you want



# Discounting example



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For  $\gamma = 1$ , what is the optimal policy?



• Quiz 2: For  $\gamma = 0.1$ , what is the optimal policy?



 Quiz 3: For which γ are West and East equally good when in state d?

# Solving MDPs

- The value (utility) of a state s: V<sup>\*</sup>(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
   Q\*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
   π<sup>\*</sup>(s) = optimal action from state s



### Snapshot of Demo – Gridworld V Values

| 0 0 | Cridworld Display |         |           |        |
|-----|-------------------|---------|-----------|--------|
|     | 0.64 →            | 0.74 →  | 0.85 )    | 1.00   |
|     | •<br>0.57         |         | •<br>0.57 | -1.00  |
|     | •<br>0.49         | ∢ 0.43  | •<br>0.48 | ∢ 0.28 |
|     | VALUES            | AFTER 1 | LOO ITERA | ATIONS |

Noise = 0.2Discount = 0.9Living reward = 0

### Snapshot of Demo – Gridworld V Values







– note that the above do not reference the optimal policy,  $\,\pi^{*}$ 

- Key idea: time-limited values
- Define V<sub>k</sub>(s) to be the optimal value of s if the game ends in k more time steps
  - Equivalently, it's what a depth-k expectimax would give from s





Value of s at k timesteps to go:  $V_k(s)$ 

#### Value iteration:

1. initialize  $V_0(s) = 0$ 

2. 
$$V_1(s) \leftarrow \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_0(s')]$$
  
3.  $V_2(s) \leftarrow \max_a \sum_{s'}^{s'} T(s, a, s') [R(s, a, s') + \gamma V_1(s')]$ 

.

5. 
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$











|   | 00                        | 0        | Gridworl | d Display |      |
|---|---------------------------|----------|----------|-----------|------|
|   |                           |          |          |           |      |
|   |                           | <b>^</b> | <b>^</b> | <b>^</b>  |      |
|   |                           | 0.00     | 0.00     | 0.00      | 0.00 |
|   |                           | <b>^</b> |          | <b>^</b>  |      |
|   |                           | 0.00     |          | 0.00      | 0.00 |
| 0 |                           |          |          |           |      |
|   |                           | 0.00     | 0.00     | 0.00      | 0.00 |
|   | VALUES AFTER O ITERATIONS |          |          |           |      |

Noise = 0.2Discount = 0.9Living reward = 0

| 00 | C C Gridworld Display     |           |           |       |  |
|----|---------------------------|-----------|-----------|-------|--|
|    |                           |           |           |       |  |
|    | •<br>0.00                 | •<br>0.00 | 0.00 →    | 1.00  |  |
|    | •<br>0.00                 |           | ∢ 0.00    | -1.00 |  |
|    | •<br>0.00                 | •<br>0.00 | •<br>0.00 | 0.00  |  |
|    | VALUES AFTER 1 ITERATIONS |           |           |       |  |

| 00 | 0                         | Gridworl | d Display |       |  |
|----|---------------------------|----------|-----------|-------|--|
|    |                           |          |           |       |  |
|    | •                         | 0.00 →   | 0.72 →    | 1.00  |  |
|    |                           |          |           |       |  |
|    | 0.00                      |          | 0.00      | -1.00 |  |
|    | <b>^</b>                  | <b>^</b> | <b>^</b>  |       |  |
|    | 0.00                      | 0.00     | 0.00      | 0.00  |  |
|    |                           |          |           | -     |  |
|    | VALUES AFTER 2 ITERATIONS |          |           |       |  |

| ○ ○ ○ Gridworld Display   |        |        |         |       |
|---------------------------|--------|--------|---------|-------|
|                           |        |        |         |       |
|                           | 0.00 ) | 0.52 → | 0.78 )  | 1.00  |
|                           |        |        | <b></b> |       |
|                           | 0.00   |        | 0.43    | -1.00 |
|                           |        |        |         |       |
|                           | 0.00   | 0.00   | 0.00    | 0.00  |
| VALUES AFTER 3 ITERATIONS |        |        |         |       |

| 0 0 | 0                         | Gridworl | d Display |        |  |
|-----|---------------------------|----------|-----------|--------|--|
|     |                           |          |           |        |  |
|     | 0.37 )                    | 0.66 )   | 0.83 )    | 1.00   |  |
|     |                           |          | <b></b>   |        |  |
|     | 0.00                      |          | 0.51      | -1.00  |  |
|     |                           |          | <b>^</b>  |        |  |
|     | 0.00                      | 0.00 >   | 0.31      | ∢ 0.00 |  |
|     | VALUES AFTER 4 ITERATIONS |          |           |        |  |

| 00 | 0                         | Gridworl | d Display |        |  |
|----|---------------------------|----------|-----------|--------|--|
|    |                           |          |           |        |  |
|    | 0.51 →                    | 0.72 ▸   | 0.84 )    | 1.00   |  |
|    | <b></b>                   |          | <b>^</b>  |        |  |
|    | 0.27                      |          | 0.55      | -1.00  |  |
|    |                           |          | <b></b>   |        |  |
|    | 0.00                      | 0.22 )   | 0.37      | ∢ 0.13 |  |
|    | VALUES AFTER 5 ITERATIONS |          |           |        |  |

| 00 | 0                         | Gridworl | d Display |        |  |
|----|---------------------------|----------|-----------|--------|--|
|    |                           |          |           |        |  |
|    | 0.59 →                    | 0.73 →   | 0.85 )    | 1.00   |  |
|    | <b>^</b>                  |          | <b>^</b>  |        |  |
|    | 0.41                      |          | 0.57      | -1.00  |  |
|    | <b>^</b>                  |          |           |        |  |
|    | 0.21                      | 0.31 →   | 0.43      | ∢ 0.19 |  |
|    | VALUES AFTER 6 ITERATIONS |          |           |        |  |

| 00                        | 0       | Gridworl | d Display |        |
|---------------------------|---------|----------|-----------|--------|
|                           |         |          |           |        |
|                           | 0.62 )  | 0.74 →   | 0.85 )    | 1.00   |
|                           | <b></b> |          | <b>^</b>  |        |
|                           | 0.50    |          | 0.57      | -1.00  |
|                           | <b></b> |          | <b></b>   |        |
|                           | 0.34    | 0.36 →   | 0.45      | ∢ 0.24 |
| VALUES AFTER 7 ITERATIONS |         |          |           |        |

| 000 |         | Gridworl | d Display |        |
|-----|---------|----------|-----------|--------|
|     |         |          |           |        |
| ο   | .63 →   | 0.74 →   | 0.85 →    | 1.00   |
|     | <b></b> |          | <b></b>   |        |
| 0   | .53     |          | 0.57      | -1.00  |
|     | <b></b> |          | <b></b>   |        |
| 0   | .42     | 0.39 →   | 0.46      | ∢ 0.26 |
|     | VALUE   | S AFTER  | 8 ITERA   | FIONS  |

| 00 | 0                         | Gridworl | d Display |        |  |
|----|---------------------------|----------|-----------|--------|--|
|    |                           |          |           |        |  |
|    | 0.64 )                    | 0.74 )   | 0.85 )    | 1.00   |  |
|    | <b>A</b>                  |          | <b></b>   |        |  |
|    | 0.55                      |          | 0.57      | -1.00  |  |
|    | <b></b>                   |          |           |        |  |
|    | 0.46                      | 0.40 →   | 0.47      | ∢ 0.27 |  |
|    | VALUES AFTER 9 ITERATIONS |          |           |        |  |

| 000                        | Gridworld Display |          |        |  |
|----------------------------|-------------------|----------|--------|--|
|                            |                   |          |        |  |
| 0.64 ▶                     | 0.74 →            | 0.85 )   | 1.00   |  |
| ▲                          |                   | <b>^</b> |        |  |
| 0.56                       |                   | 0.57     | -1.00  |  |
|                            |                   | <b>_</b> |        |  |
| 0.48                       | ∢ 0.41            | 0.47     | ∢ 0.27 |  |
| VALUES AFTER 10 ITERATIONS |                   |          |        |  |

| 00                         | Gridworld Display |        |        |        |
|----------------------------|-------------------|--------|--------|--------|
|                            |                   |        |        |        |
|                            | 0.64 )            | 0.74 ) | 0.85 ) | 1.00   |
|                            |                   |        |        |        |
|                            | 0.56              |        | 0.57   | -1.00  |
|                            |                   |        |        |        |
|                            | 0.48              | ∢ 0.42 | 0.47   | ∢ 0.27 |
| VALUES AFTER 11 ITERATIONS |                   |        |        |        |

| 00                         | ○ ○ ○ Gridworld Display |        |          |        |
|----------------------------|-------------------------|--------|----------|--------|
|                            |                         |        |          |        |
|                            | 0.64 )                  | 0.74 ) | 0.85 )   | 1.00   |
|                            | <b></b>                 |        | <b>A</b> |        |
|                            | 0.57                    |        | 0.57     | -1.00  |
|                            |                         |        | <b></b>  |        |
|                            | 0.49                    | ∢ 0.42 | 0.47     | ∢ 0.28 |
| VALUES AFTER 12 ITERATIONS |                         |        |          |        |

| 0 0 | Gridworld Display           |        |         |        |  |
|-----|-----------------------------|--------|---------|--------|--|
|     |                             |        |         |        |  |
|     | 0.64 )                      | 0.74 → | 0.85 )  | 1.00   |  |
|     | ▲                           |        | ▲       |        |  |
|     | 0.57                        |        | 0.57    | -1.00  |  |
|     | <b></b>                     |        | <b></b> |        |  |
|     | 0.49                        | ∢ 0.43 | 0.48    | ∢ 0.28 |  |
|     | VALUES AFTER 100 ITERATIONS |        |         |        |  |

# Proof sketch: convergence of value iteration

- How do we know the V<sub>k</sub> vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state V<sub>k</sub> and V<sub>k+1</sub> can be viewed as depth k+1 expectimax results in nearly identical search trees
  - The difference is that on the bottom layer, V<sub>k+1</sub> has actual rewards while V<sub>k</sub> has zeros
  - That last layer is at best all R<sub>MAX</sub>
  - It is at worst R<sub>MIN</sub>
  - But everything is discounted by  $\gamma^{k}$  that far out
  - So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k \max[R]$  different
  - So as k increases, the values converge



#### Bellman Equations and Value iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

 Value iteration is just a fixed point solution method ... though the V<sub>k</sub> vectors are also interpretable as timelimited values

# But, how do you compute a policy?

Suppose that we have run value iteration and now have a pretty good approximation of V\* ...



How do we compute the optimal policy?

#### But, how do you compute a policy?



The optimal policy is implied by the optimal value function...