

Markov Decision Processes

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

Stochastic domains

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Example: stochastic grid world

Slide: based on Berkeley CS188 course notes (downloaded Summer 2015)

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as
planned
 80% of the time, the action North takes the

agent North
(if there is no wall there)

 10% of the time, North takes the agent
West; 10% East

 If there is a wall in the direction the agent
would have been taken, the agent stays put

 The agent receives rewards each time step
 Reward function can be anything. For ex:

● Small “living” reward each step (can be
negative)

● Big rewards come at the end (good or bad)

 Goal: maximize (discounted) sum of rewards

Stochastic actions

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Deterministic Grid World Stochastic Grid World

The transition function

Image: Berkeley CS188 course notes (downloaded Summer 2015)

0.8
0.10.1

a=”up”

action

Transition probabilities:

The transition function

Image: Berkeley CS188 course notes (downloaded Summer 2015)

0.8
0.10.1

a=”up”

action

Transition function:

– defines transition probabilities for
each state,action pair

Transition probabilities:

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Technically, an MDP is a 4-tuple

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

But, what is the objective?

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Objective: calculate a strategy for acting so as to maximize
the (discounted) sum of future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple

Example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

What is a policy?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

This policy is optimal when
R(s, a, s’) = -0.03 for all non-

terminal states

 In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

 For MDPs, we want an optimal policy *: S → A
 A policy  gives an action for each state
 An optimal policy is one that maximizes

 expected utility if followed
 An explicit policy defines a reflex agent

 Expectimax didn’t compute entire policies
 It computed the action for a single state

only

Why is it Markov?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 “Markov” generally means that given the present state,
the future and the past are independent

 For Markov decision processes, “Markov” means action
outcomes depend only on the current state

 This is just like search, where the successor function could
only depend on the current state (not the history)

Andrey Markov
(1856-1922)

Examples of optimal policies

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

slow fast

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

slow fast

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?

Is there a better way?

Discounting rewards

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Is this better? Or is this better?

In general: how should we balance amount
of reward vs how soon it is obtained?

Discounting rewards

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 It’s reasonable to maximize the sum of rewards
 It’s also reasonable to prefer rewards now to rewards later
 One solution: values of rewards decay exponentially

Worth
Now

Worth Next
Step

Worth In Two
Steps

Where, for example:

Discounting rewards

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 How to discount?
 Each time we descend a

level, we multiply in the
discount once

 Why discount?
 Sooner rewards probably

do have higher utility
than later rewards

 Also helps our algorithms
converge

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2

+ 0.25*3
 U([1,2,3]) < U([3,2,1])

Discounting rewards

In general:

Utility

Choosing a reward function

Image: Berkeley CS188 course notes (downloaded Summer 2015)

A few possibilities:
– all reward on goal/firepit
– negative reward everywhere

except terminal states
– gradually increasing reward

as you approach the goal

In general:
– reward can be whatever you

want

Discounting example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Given:

 Actions: East, West, and Exit (only available in exit states
a, e)

 Transitions: deterministic

 Quiz 1: For  = 1, what is the optimal policy?

 Quiz 2: For  = 0.1, what is the optimal policy?

 Quiz 3: For which  are West and East equally good when in
state d?

Solving MDPs

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 The value (utility) of a state s:
V*(s) = expected utility starting in s

and acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s
and (thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s, a

(s,a,s’) is a
transition

s,a,s’

s is a state

(s, a) is a
q-state

S'

Snapshot of Demo – Gridworld V Values

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld V Values

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration

Slide: Derived from Berkeley CS188 course notes (downloaded Summer 2015)

a

s

s, a

s,a,s’

We're going to calculate V* and/or Q* by
repeatedly doing one-step expectimax.

Notice that the V* and Q* can be defined
recursively:

Called Bellman
equations

S'

– note that the above do not reference the optimal policy,

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

 Key idea: time-limited values

 Define Vk(s) to be the optimal value
of s if the game ends in k more time
steps
 Equivalently, it’s what a depth-k

expectimax would give from s

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

– This iteration converges! The value
of each state converges to a unique
optimal value.

– policy typically converges before
value function converges...

– time complexity = O(S^2 A)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 0 0 0

Assume no discount

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 0 0 0

 2 1 0

Assume no discount

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 0 0 0

 2 1 0

 3.5 2.5 0

Assume no discount

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Proof sketch: convergence of value iteration

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 How do we know the Vk vectors are going to
converge?

 Case 1: If the tree has maximum depth M,
then VM holds the actual untruncated values

 Case 2: If the discount is less than 1
 Sketch: For any state Vk and Vk+1 can be

viewed as depth k+1 expectimax results in
nearly identical search trees

 The difference is that on the bottom layer, Vk+1
has actual rewards while Vk has zeros

 That last layer is at best all RMAX

 It is at worst RMIN

 But everything is discounted by γk that far out
 So Vk and Vk+1 are at most γk max|R| different

 So as k increases, the values converge

Bellman Equations and Value iteration

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Bellman equations characterize the optimal values:

 Value iteration computes them:

 Value iteration is just a fixed point solution method
… though the Vk vectors are also interpretable as time-
limited values

But, how do you compute a policy?

Suppose that we have run value iteration
and now have a pretty good
approximation of V* …

How do we compute the optimal policy?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

But, how do you compute a policy?

Given values calculated using value
iteration, do one step of expectimax:

Image: Berkeley CS188 course notes (downloaded Summer 2015)

The optimal policy is implied by the optimal value function...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

