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Stochastic domains

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Example: stochastic grid world

Slide: based on Berkeley CS188 course notes (downloaded Summer 2015)

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as 
planned
 80% of the time, the action North takes the 

agent North 
(if there is no wall there)

 10% of the time, North takes the agent 
West; 10% East

 If there is a wall in the direction the agent 
would have been taken, the agent stays put

 The agent receives rewards each time step
 Reward function can be anything. For ex:

● Small “living” reward each step (can be 
negative)

● Big rewards come at the end (good or bad)

 Goal: maximize (discounted) sum of rewards



  

Stochastic actions

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Deterministic Grid World Stochastic Grid World



  

The transition function

Image: Berkeley CS188 course notes (downloaded Summer 2015)
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The transition function

Image: Berkeley CS188 course notes (downloaded Summer 2015)
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Transition function:

– defines transition probabilities for 
each state,action pair

Transition probabilities:



  

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Technically, an MDP is a 4-tuple
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What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Probability of going from s to s' 
when executing action a

Objective: calculate a strategy for acting so as to maximize 
the (discounted) sum of future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple



  

Example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward
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What is a policy?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

This policy is optimal when 
R(s, a, s’) = -0.03 for all non-

terminal states

 In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

 For MDPs, we want an optimal policy *: S → A
 A policy  gives an action for each state
 An optimal policy is one that maximizes      

  expected utility if followed
 An explicit policy defines a reflex agent

 Expectimax didn’t compute entire policies
 It computed the action for a single state 

only



  

Why is it Markov?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 “Markov” generally means that given the present state, 
the future and the past are independent

 For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

 This is just like search, where the successor function could 
only depend on the current state (not the history)

Andrey Markov 
(1856-1922)



  

Examples of optimal policies

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



  

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)
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How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

slow fast

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?



  

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

slow fast

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?

Is there a better way?



  

Discounting rewards

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Is this better? Or is this better?

In general: how should we balance amount 
of reward vs how soon it is obtained?



  

Discounting rewards

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 It’s reasonable to maximize the sum of rewards
 It’s also reasonable to prefer rewards now to rewards later
 One solution: values of rewards decay exponentially

Worth 
Now

Worth Next 
Step

Worth In Two 
Steps

Where, for example: 



  

Discounting rewards

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 How to discount?
 Each time we descend a 

level, we multiply in the 
discount once

 Why discount?
 Sooner rewards probably 

do have higher utility 
than later rewards

 Also helps our algorithms 
converge

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 

+ 0.25*3
 U([1,2,3]) < U([3,2,1])



  

Discounting rewards

In general:

Utility 



  

Choosing a reward function

Image: Berkeley CS188 course notes (downloaded Summer 2015)

A few possibilities:
– all reward on goal/firepit
– negative reward everywhere 

except terminal states
– gradually increasing reward 

as you approach the goal

In general:
– reward can be whatever you 

want



  

Discounting example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Given:

 Actions: East, West, and Exit (only available in exit states 
a, e)

 Transitions: deterministic

 Quiz 1: For  = 1, what is the optimal policy?

 Quiz 2: For  = 0.1, what is the optimal policy?

 Quiz 3: For which  are West and East equally good when in 
state d?



  

Solving MDPs

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 The value (utility) of a state s:
V*(s) = expected utility starting in s 

and acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s 
and (thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a state

(s, a) is a 
q-state

S'



  

Snapshot of Demo – Gridworld V Values

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Snapshot of Demo – Gridworld V Values

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Value iteration

Slide: Derived from Berkeley CS188 course notes (downloaded Summer 2015)

a

s

s, a

s,a,s’

We're going to calculate V* and/or Q* by 
repeatedly doing one-step expectimax.

Notice that the V* and Q* can be defined 
recursively:

Called Bellman 
equations

S'

– note that the above do not reference the optimal policy, 



  

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

 Key idea: time-limited values

 Define Vk(s) to be the optimal value 
of s if the game ends in k more time 
steps
 Equivalently, it’s what a depth-k 

expectimax would give from s



  

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize 

2. 

3. 

4.     ….

5. 



  

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize 

2. 

3. 

4.     ….

5. 

– This iteration converges! The value 
of each state converges to a unique 
optimal value.

– policy typically converges before
value function converges...

– time complexity = O(S^2 A) 



  

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

  0             0             0

Assume no discount



  

Value iteration example
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  0             0             0

  2             1             0

Assume no discount



  

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

  0             0             0

  2             1             0

  3.5          2.5          0

Assume no discount



  

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
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Value iteration example
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Value iteration example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Proof sketch: convergence of value iteration

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 How do we know the Vk vectors are going to 
converge?

 Case 1: If the tree has maximum depth M, 
then VM holds the actual untruncated values

 Case 2: If the discount is less than 1
 Sketch: For any state Vk and Vk+1 can be 

viewed as depth k+1 expectimax results in 
nearly identical search trees

 The difference is that on the bottom layer, Vk+1 
has actual rewards while Vk has zeros

 That last layer is at best all RMAX 

 It is at worst RMIN 

 But everything is discounted by γk that far out
 So Vk and Vk+1 are at most γk max|R| different

 So as k increases, the values converge



  

Bellman Equations and Value iteration

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Bellman equations characterize the optimal values:

 Value iteration computes them:

 Value iteration is just a fixed point solution method
… though the Vk vectors are also interpretable as time-
limited values



  

But, how do you compute a policy?

Suppose that we have run value iteration 
and now have a pretty good 
approximation of V* …

How do we compute the optimal policy?

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

But, how do you compute a policy?

Given values calculated using value 
iteration, do one step of expectimax:

Image: Berkeley CS188 course notes (downloaded Summer 2015)

The optimal policy is implied by the optimal value function...
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