Markov Models and Hidden Markov Models

Robert Platt Northeastern University

Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Markov Models

We have already seen that an MDP provides a useful framework for modeling stochastic control problems.

Markov Models: model any kind of temporally dynamic system.

Probability again: Independence

Two random variables, x and y, are independent when:

$$\forall (x,y), P(x,y) = P(x)P(y) \iff x \perp y$$

 $x \not \perp y$

The outcomes of two different coin flips are usually independent of each other

Probability again: Independence

If:
$$P(x, y) = P(x)P(y)$$

Then:
$$P(x) = P(x|y)$$

 $P(y) = P(y|x)$

Why?

Are T and W independent?

Are T and W independent?

P(W)		
W	Р	
sun	0.6	
rain	0.4	

Are T and W independent?

Conditional independence

Independence:

$$\forall (x, y), P(x, y) = P(x)P(y)$$
$$x \perp \!\!\!\perp y$$

Conditional independence:

$$\forall (x, y, z), P(x, y|z) = P(x|z)P(y|z)$$
$$x \perp \!\!\!\perp y|z$$

Equivalent statements of conditional independence:

P(x|z) = P(x|z, y)

$$P(y|z) = P(y|z, x)$$

Conditional independence: example

P(toothache, catch | cavity) = P(toothache | cavity) = P(catch | cavity)

or...

P(toothache | cavity) = P(toothache | cavity, catch)

P(catch | cavity) = P(catch | cavity, toothache)

Conditional independence: example

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional independence: example

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Since this is a Markov process, we assume transitions are Markov:

Process model: $P(X_t | X_{t-1}) = P(X_t | X_{t-1}, ..., X_1)$

Markov assumption: $X_t \perp X_{t-2} | X_{t-1}$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

 $P(X_1, X_2, X_3, X_4) = \underbrace{P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)}_{P(X_2, X_1)}$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)$

Can we simplify this expression?

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)$ $P(X_3|X_2) P(X_4|X_3)$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)$ $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)P(X_4|X_3, X_2, X_1)$ $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$ T-1

In general: $P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=1} P(X_{t+1}|X_t)$

How do we calculate: $P(X_1, X_2, X_3, X_4) = ?$ $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X \text{ Process model})$ X_2, X_1) $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$ In general: $P(X_1, X_2, ..., X_T) = P(X_1) \prod P(X_{t+1}|X_t)$

Markov Processes: example

- States: X = {rain, sun}
- Initial distribution: 1.0 sun
- Process model: P(X_t | X_{t-1}):

Two new ways of representing the same CPT

X _{t-1}	X _t	$\mathbf{P}(\mathbf{X}_{t} \mathbf{X}_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Simulating dynamics forward

But, suppose we want to predict the state at time T, given a prior distribution at time 1?

$$P(X_{2}) = \sum_{X_{1}} P(X_{1})P(X_{2}|X_{1})$$
$$P(X_{3}) = \sum_{X_{2}} P(X_{2})P(X_{3}|X_{2})$$
$$\vdots$$
$$P(X_{T}) = \sum_{X_{T-1}} P(X_{T-1})P(X_{T}|X_{T-1})$$

Markov Processes: example

Initial distribution: 1.0 sun

What is the probability distribution after one step?

$$P(X_2 = \operatorname{sun}) = P(X_2 = \operatorname{sun}|X_1 = \operatorname{sun})P(X_1 = \operatorname{sun}) + P(X_2 = \operatorname{sun}|X_1 = \operatorname{rain})P(X_1 = \operatorname{rain})$$

 $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Simulating dynamics forward

From initial observation of sun $\begin{cases}
1.0 \\
0.0
\end{cases}
\begin{pmatrix}
0.9 \\
0.1
\end{pmatrix}
\begin{pmatrix}
0.84 \\
0.16
\end{pmatrix}
\begin{pmatrix}
0.804 \\
0.196
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
0.75 \\
0.25
\end{pmatrix}$ $P(X_1) P(X_2) P(X_3) P(X_4) P(X_4)$

From initial observation of rain $\begin{cases}
0.0 \\
1.0
\end{cases}
\begin{pmatrix}
0.3 \\
0.7
\end{pmatrix}
\begin{pmatrix}
0.48 \\
0.52
\end{pmatrix}
\begin{pmatrix}
0.588 \\
0.412
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
0.75 \\
0.25
\end{pmatrix}
\\
P(X_1)
P(X_2)
P(X_3)
P(X_4)
P(X_4)
P(X_{\infty})$

• From yet another initial distribution $P(X_1)$: $\begin{pmatrix} p \\ 1-p \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix} \\ P(X_1) \qquad \qquad P(X_{\infty})$

Simulating dynamics forward

Hidden Markov Models (HMMs)

<u>Hidden Markov Models</u>: markov models applied to estimation problems

- speech to text
- tracking in computer vision
- robot localization

Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs)

<u>Sensor Markov Assumption:</u> the current observation depends only on current state:

$$P(E_t | X_t, X_{t-1}, \dots, X_1) = P(E_t | X_t)$$
$$E_t \perp X_{t-1} | X_t$$

HMM example

R _t	R _{t+1}	$P(R_{t+1} R_{t})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X_t \mid X_{t-1})$
 - Emissions: $P(E_t \mid X_t)$

R _t	\mathbf{U}_{t}	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Real world HMM applications

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

- Filtering, or monitoring, is the task of tracking the distribution B_t(X) = P_t(X_t | e₁, ..., e_t) (the belief state) over time
- We start with B₁(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Given a prior distribution, $P(X_1)$, and a series of observations, E_1, \ldots, E_T , calculate the posterior distribution: $P(X_t|E_1, \ldots, E_T)$

Two steps:

Given a prior distribution, $P(X_1)$, and a series of observations, E_1, \ldots, E_T , calculate the posterior distribution: $P(X_t|E_1, \ldots, E_T)$

Two steps:

Process update

This is just forward simulation of the Markov Model

Process update: example

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

$$B'(X_{t+1}) = \sum_{X_t} P(X_{t+1}|X_t, e_{1:t})B(X_t)$$

Observation update

Observation update

 As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

<0.01</th><0.01</th><0.01</th><0.01</th><0.01</th><0.01</td><0.01</td><0.01</td><0.83</td><0.02</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td><0.01</td>

Before observation

After observation

 $B(X_{t+1}) = \eta P(e_{t+1}|X_{t+1})B'(X_{t+1})$

Observation model: can read in which directions there is a wall, never more than 1 mistake Process model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

R _t	R _{t+1}	$P(R_{t+1} R_{t})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

B(+r) = 0.5B(-r) = 0.5

	R_{t}	R_{t+1}	$P(R_{t+1} R_{t})$
B'(+r) = 0.5	+r	+r	0.7
7 B'(-r) = 0.5	+r	-r	0.3
	-r	+r	0.3
B(+r) = 0.5 $B(+r) = 0.818$	-r	-r	0.7
B(-r) = 0.5 $B(-r) = 0.182$			
$(Rain_0) \rightarrow (Rain_1) \rightarrow (Rain_2) $	R _t	Ut	$P(U_t R_t)$
	+r	+u	0.9
	+r	-u	0.1
(Umbrella ₁ $)$ $($ Umbrella ₂ $)$	-r	+u	0.2
	-r	-u	0.8

Particle Filtering

Representation: Particles

P(x) approximated by number of particles with	Particles :
value x	(3,3) (2,3)
So, many x may have P(x) = 0!	(3,3) (3,2)
 More particles, more accuracy 	(3,3) (3,2)
	(1,2) (3,3)
For now, all particles have a weight of 1	(3,3) (2,3)

Our representation of P(X) is now a list of N particles (samples)

For now, all particles have a weight of 1

Generally, N << |X|

Storing map from X to counts would defeat the point

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:

(3,3)(2,3)

(3.3)

(3.2)

(3,3) (3,2) (1,2) (3,3) (3,3)

(2.3)

Particles:

(3,2) (2,3)

(3,2)

(3,1) (3,3) (3,2) (1,3) (2,3)

(3,2)(2,2)

Particle Filtering: Observe

Singhting		
Don't	sample observation,	fix it

Slightly trickier

 Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles:

(3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4

(3.2) w = .9

(1,3) w=.1 (2,3) w=.2

(3.2) w = .9

(2.2) w = .4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

 Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: G₁^a = (3,3) G₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 - Example successor: G₂^a = (2,3) G₂^b = (6,3)
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(\mathbf{E_1^a} | \mathbf{G_1^a}) * P(\mathbf{E_1^b} | \mathbf{G_1^b})$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood