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Markov Models

We have already seen that an MDP provides a useful framework 
for modeling stochastic control problems.

Markov Models: model any kind of temporally dynamic system.



  

Probability again: Independence

Two random variables, x and y, are independent when:

The outcomes of two different coin flips are 
usually independent of each other

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Probability again: Independence

If:

Then:

Why?



  

Are T and W independent?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Are T and W independent?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Are T and W independent?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Conditional independence

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Independence:

Conditional independence:

Equivalent statements of conditional independence:



  

Conditional independence: example

cavity

toothache catch

P(toothache, catch | cavity) = P(toothache | cavity) = P(catch | cavity)

P(toothache | cavity) = P(toothache | cavity, catch)

P(catch | cavity) = P(catch | cavity, toothache)

or...



  

Conditional independence: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 What about this domain:

 Traffic
 Umbrella
 Raining



  

Conditional independence: example
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 What about this domain:

 Fire
 Smoke
 Alarm



  

Markov Processes

transitions

State at time=1
State at time=2



  

Markov Processes

transitions

State at time=1
State at time=2

Since this is a Markov process, we assume transitions are Markov:

Markov assumption:

Process model:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:

Can we simplify this expression?



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:

In general:



  

Markov Processes

How do we calculate:

In general:

Process model



  

Markov Processes: example

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

 States: X = {rain, sun}

rain sun
0.9

0.7

0.3

0.1

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

 Initial distribution: 1.0 sun

 Process model: P(Xt | Xt-1):

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Simulating dynamics forward

Joint distribution:

But, suppose we want to predict the state at time T, given a prior 
distribution at time 1?

...



  

Markov Processes: example

 Initial distribution: 1.0 sun

 What is the probability distribution after one step?

rain sun
0.9

0.7

0.3

0.1
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Simulating dynamics forward

 From initial observation of sun

 From initial observation of rain

 From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…
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Simulating dynamics forward

 From initial observation of sun

 From initial observation of rain

 From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…

This is called the 
stationary distribution

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Hidden Markov Models (HMMs)

Hidden Markov Models: markov models applied to 
estimation problems

– speech to text
– tracking in computer vision
– robot localization



  

Hidden Markov Models (HMMs)

State,      , is assumed to be unobserved

However, you get to make one observation,      , on each 
timestep.

Called an “emission”



  

Hidden Markov Models (HMMs)

Sensor Markov Assumption: the current observation 
depends only on current state:



  

HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

 An HMM is defined by:

 Initial distribution:
 Transitions:
 Emissions:

Umbrella
t-1

Umbrella
t

Umbrella
t+1

Raint-1 Raint Raint+1
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Real world HMM applications

 Speech recognition HMMs:
 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of 

thousands)

 Machine translation HMMs:
 Observations are words (tens of thousands)
 States are translation options

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

HMM Filtering

 Filtering, or monitoring, is the task of tracking the 
distribution Bt(X) = Pt(Xt | e1, …, et) (the belief 
state) over time

 We start with B1(X) in an initial setting, usually 
uniform

 As time passes, or we get observations, we update 
B(X)

 The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation 
for the Apollo program

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update

“Beliefs”



  

Process update

This is just forward simulation of the Markov Model



  

Process update: example

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Observation update

Where                                is a normalization factor



  

Observation update

 As we get observations, beliefs get reweighted, uncertainty 
“decreases”

Before observation After observation

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10

Observation model: can read in which directions there is a 
wall, never more than 1 mistake

Process model: may not execute action with small prob.

Prob

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10

Lighter grey: was possible to get the reading, but less likely b/c required 
1 mistake

Prob

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10
Prob
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Robot localization example

10
Prob
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Robot localization example

10
Prob
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Robot localization example

10
Prob
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Weather HMM example

Rt
Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117
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Particle Filtering

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Representation: Particles

 Our representation of P(X) is now a list of N 
particles (samples)
 Generally, N << |X|
 Storing map from X to counts would defeat the 

point

 P(x) approximated by number of particles with 
value x
 So, many x may have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles
:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filtering: Elapse Time

 Each particle is moved by sampling 
its next position from the transition 
model

 This is like prior sampling – samples’ 
frequencies reflect the transition 
probabilities

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If enough samples, close to exact values 

before and after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)
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 Slightly trickier:
 Don’t sample observation, fix it

 Similar to likelihood weighting, 
downweight samples based on the 
evidence

 As before, the probabilities don’t sum to 
one, since all have been downweighted 
(in fact they now sum to (N times) an 
approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)
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Particle Filtering: Resample

 Rather than tracking weighted 
samples, we resample

 N times, we choose from our 
weighted sample distribution (i.e. 
draw with replacement)

 This is equivalent to renormalizing 
the distribution

 Now the update is complete for 
this time step, continue with the 
next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)
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Recap: Particle Filtering
 Particles: track samples of states rather than an explicit 

distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

     Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)
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Robot Localization

 In robot localization:
 We know the map, but not the robot’s position
 Observations may be vectors of range finder 

readings
 State space and readings are typically 

continuous (works basically like a very fine 
grid) and so we cannot store B(X)

 Particle filtering is a main technique

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filter Localization (Sonar)



Particle Filter Localization (Laser)



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, 
using multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at 
each time

 Variables from time t can condition on those 
from t-1

 Dynamic Bayes nets are a generalization of 
HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



DBN Particle Filters

 A particle is a complete sample for a time step

 Initialize: Generate prior samples for the t=1 Bayes net
 Example particle: G1

a = (3,3) G1
b = (5,3) 

 Elapse time: Sample a successor for each particle 
 Example successor: G2

a = (2,3) G2
b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample
 Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

 Resample: Select prior samples (tuples of values) in 
proportion to their likelihood
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