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Markov Models

We have already seen that an MDP provides a useful framework 
for modeling stochastic control problems.

Markov Models: model any kind of temporally dynamic system.



  

Probability again: Independence

Two random variables, x and y, are independent when:

The outcomes of two different coin flips are 
usually independent of each other

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Probability again: Independence

If:

Then:

Why?



  

Are T and W independent?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Are T and W independent?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Are T and W independent?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Conditional independence

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Independence:

Conditional independence:

Equivalent statements of conditional independence:



  

Conditional independence: example

cavity

toothache catch

P(toothache, catch | cavity) = P(toothache | cavity) = P(catch | cavity)

P(toothache | cavity) = P(toothache | cavity, catch)

P(catch | cavity) = P(catch | cavity, toothache)

or...



  

Conditional independence: example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 What about this domain:

 Traffic
 Umbrella
 Raining



  

Conditional independence: example
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 What about this domain:

 Fire
 Smoke
 Alarm



  

Markov Processes

transitions

State at time=1
State at time=2



  

Markov Processes

transitions

State at time=1
State at time=2

Since this is a Markov process, we assume transitions are Markov:

Markov assumption:

Process model:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:

Can we simplify this expression?



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:



  

Markov Processes

How do we calculate:

In general:



  

Markov Processes

How do we calculate:

In general:

Process model



  

Markov Processes: example

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

 States: X = {rain, sun}

rain sun
0.9

0.7

0.3

0.1

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

 Initial distribution: 1.0 sun

 Process model: P(Xt | Xt-1):

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Simulating dynamics forward

Joint distribution:

But, suppose we want to predict the state at time T, given a prior 
distribution at time 1?

...



  

Markov Processes: example

 Initial distribution: 1.0 sun

 What is the probability distribution after one step?

rain sun
0.9

0.7

0.3

0.1
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Simulating dynamics forward

 From initial observation of sun

 From initial observation of rain

 From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…
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Simulating dynamics forward

 From initial observation of sun

 From initial observation of rain

 From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…

This is called the 
stationary distribution

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Hidden Markov Models (HMMs)

Hidden Markov Models: markov models applied to 
estimation problems

– speech to text
– tracking in computer vision
– robot localization



  

Hidden Markov Models (HMMs)

State,      , is assumed to be unobserved

However, you get to make one observation,      , on each 
timestep.

Called an “emission”



  

Hidden Markov Models (HMMs)

Sensor Markov Assumption: the current observation 
depends only on current state:



  

HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

 An HMM is defined by:

 Initial distribution:
 Transitions:
 Emissions:

Umbrella
t-1

Umbrella
t

Umbrella
t+1

Raint-1 Raint Raint+1
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Real world HMM applications

 Speech recognition HMMs:
 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of 

thousands)

 Machine translation HMMs:
 Observations are words (tens of thousands)
 States are translation options

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

HMM Filtering

 Filtering, or monitoring, is the task of tracking the 
distribution Bt(X) = Pt(Xt | e1, …, et) (the belief 
state) over time

 We start with B1(X) in an initial setting, usually 
uniform

 As time passes, or we get observations, we update 
B(X)

 The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation 
for the Apollo program

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update



  

HMM Filtering

Given a prior distribution,           , and a series 
of observations,                 , calculate the 
posterior distribution:

Two steps:

Process update Observation update

“Beliefs”



  

Process update

This is just forward simulation of the Markov Model



  

Process update: example

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Observation update

Where                                is a normalization factor



  

Observation update

 As we get observations, beliefs get reweighted, uncertainty 
“decreases”

Before observation After observation

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10

Observation model: can read in which directions there is a 
wall, never more than 1 mistake

Process model: may not execute action with small prob.

Prob

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10

Lighter grey: was possible to get the reading, but less likely b/c required 
1 mistake

Prob

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10
Prob
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Robot localization example

10
Prob
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Robot localization example

10
Prob
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Robot localization example

10
Prob
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Weather HMM example

Rt
Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117
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Particle Filtering

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Representation: Particles

 Our representation of P(X) is now a list of N 
particles (samples)
 Generally, N << |X|
 Storing map from X to counts would defeat the 

point

 P(x) approximated by number of particles with 
value x
 So, many x may have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles
:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filtering: Elapse Time

 Each particle is moved by sampling 
its next position from the transition 
model

 This is like prior sampling – samples’ 
frequencies reflect the transition 
probabilities

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If enough samples, close to exact values 

before and after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)
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 Slightly trickier:
 Don’t sample observation, fix it

 Similar to likelihood weighting, 
downweight samples based on the 
evidence

 As before, the probabilities don’t sum to 
one, since all have been downweighted 
(in fact they now sum to (N times) an 
approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)
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Particle Filtering: Resample

 Rather than tracking weighted 
samples, we resample

 N times, we choose from our 
weighted sample distribution (i.e. 
draw with replacement)

 This is equivalent to renormalizing 
the distribution

 Now the update is complete for 
this time step, continue with the 
next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)
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Recap: Particle Filtering
 Particles: track samples of states rather than an explicit 

distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

     Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)
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Robot Localization

 In robot localization:
 We know the map, but not the robot’s position
 Observations may be vectors of range finder 

readings
 State space and readings are typically 

continuous (works basically like a very fine 
grid) and so we cannot store B(X)

 Particle filtering is a main technique

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filter Localization (Sonar)



Particle Filter Localization (Laser)



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, 
using multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at 
each time

 Variables from time t can condition on those 
from t-1

 Dynamic Bayes nets are a generalization of 
HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



DBN Particle Filters

 A particle is a complete sample for a time step

 Initialize: Generate prior samples for the t=1 Bayes net
 Example particle: G1

a = (3,3) G1
b = (5,3) 

 Elapse time: Sample a successor for each particle 
 Example successor: G2

a = (2,3) G2
b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample
 Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

 Resample: Select prior samples (tuples of values) in 
proportion to their likelihood
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