

Heuristic Search

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

Recap: What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

Recap: What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

Recap: BFS/UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Recap: BFS/UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Start Goal
It's like this

Notice that we search equally far in all directions...

Idea

Is it possible to use additional information to
decide which direction to search in?

Idea

Is it possible to use additional information to
decide which direction to search in?

Yes!

Instead of searching in all directions, let's bias
search in the direction of the goal.

Example

Stright-line distances
to Bucharest

Example

Start state

Goal state

Expand states in order of their distance to the goal

– for each state that you put on the fringe: calculate
straight-line distance to the goal

– expand the state on the fringe closest to the goal

Example

Start state

Goal state

Expand states in order of their distance to the goal

– for each state that you put on the fringe: calculate
straight-line distance to the goal

– expand the state on the fringe closest to the goal

Heuristic:

Greedy search

Greedy Search

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

– heuristic:

– on each step, choose to expand the state with the
lowest heuristic value.

i.e. distance to Bucharest

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

– heuristic:

– on each step, choose to expand the state with the
lowest heuristic value.

i.e. distance to Bucharest

This is like a guess about how far
the state is from the goal

Example: Greedy Search

Example: Greedy Search

Example: Greedy Search

Example: Greedy Search

Path: A-S-F-B

Example: Greedy Search

Notice that this is not the optimal path!

Path: A-S-F-B

Example: Greedy Search

Notice that this is not the optimal path!

Path: A-S-F-B

Greedy Search:
– Not optimal
– Not complete
– But, it can be very fast

Greedy vs UCS

Greedy Search:
– Not optimal
– Not complete
– But, it can be very fast

UCS:
– Optimal
– Complete
– Usually very slow

Greedy vs UCS

Greedy Search:
– Not optimal
– Not complete
– But, it can be very fast

UCS:
– Optimal
– Complete
– Usually very slow

Can we combine greedy and UCS???

Greedy vs UCS

Greedy Search:
– Not optimal
– Not complete
– But, it can be very fast

UCS:
– Optimal
– Complete
– Usually very slow

Can we combine greedy and UCS???

YES: A*

Greedy vs UCS

UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy vs UCS

UCS Greedy

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy vs UCS

UCS Greedy

A*

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

A*

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

What is “cost-to-go”?

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

What is “cost-to-go”?
– minimum cost required

to reach a goal state

A*

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2
h=6

h=0

c
h=7

3

e h=1

1

S

a

b

c

ed

dG

G

g = 0 h=6

g = 1 h=5

g = 2 h=6

g = 3 h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

A*: expand states in order of

When should A* terminate?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* optimal?

A

GS

1 3

h = 6

h = 0

5

h = 7

What went wrong?
Actual cost-to-go < heuristic
The heuristic must be less than the actual cost-to-go!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Recall:
– in tree search, we do not track the explored set
– in graph search, we do

Recall: Breadth first search (BFS)

What is the purpose of the explored set?

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible
Optimal if h is consistent

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

What is “cost-to-go”?
– minimum cost required

to reach a goal state

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

More on this later...

Admissibility: Example

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible???

Admissibility

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible???
YES! Why?

Admissibility: Example

h(s) = ?

Start state Goal state

Can you think of an admissible heuristic for this problem?

Admissibility

Why isn't this heuristic admissible?

A

GS

1 3

h = 6

h = 0

5

h = 7

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Consistency

What went wrong?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Consistency

Cost of going from s to s'

s s'

Consistency

Rearrange terms

Consistency

Cost of going from s to s'
implied by heuristic

Actual cost of
going from s to s'

Consistency

Cost of going from s to s'
implied by heuristic

Actual cost of
going from s to s'

Consistency

Consistency implies that the “f-cost” never decreases along any
path to a goal state.
– the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.

Given any goal state, A* expands states that reach the goal
state optimally before expanding states the reach the goal state
suboptimally.

Consistency implies admissibility

Suppose:

Then:

Consistency implies admissibility

Suppose:

Then:

Consistency implies admissibility

Suppose:

Then: admissible

Consistency implies admissibility

Suppose:

Then:

Consistency implies admissibility

Suppose:

Then:

admissible

Consistency implies admissibility

Suppose:

Then:

admissibleadmissible

Consistency implies admissibility

Suppose:

Then:

A* vs UCS

Uniform-cost expands
equally in all “directions”

A* expands mainly
toward the goal, but does
hedge its bets to ensure
optimality

Start Goal

Start Goal

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

A* vs UCS

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy UCS A*

Choosing a heuristic

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!

Choosing a heuristic

How much better is ?

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Choosing a heuristic

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:

(by depth 12)

Choosing a heuristic

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:

(by depth 12)

So, getting the heuristic right can speed things
up by multiple orders of magnitude!

Choosing a heuristic

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:
– solve a relaxed version of the problem
– solve a subproblem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

