Heuristic Search

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

Recap: What is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Recap: What is graph search?

[[] Oradea

Arad L

Goal state

- Sibiu 99 Fagaras

118 td vaslui

1 Timisoara

Start state

[] Mehadia

75
Drobeta []

“raiovs e Eforie
Craiova [] Giurgiu

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Recap: BFS/UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Recap: BFS/UCS

Notice that we search equally far in all directions...

It's like this > o

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

|dea

IS It possible to use additional information to
decide which direction to search in?

|dea

IS It possible to use additional information to
decide which direction to search in?

] Oradea

Arad

Sibiu

99

118
80

Timisoara B

111

1 Lugoj
70
[] Mehadia
75
Drobeta [] 120
i
Craiova

Rimnicu Vilcea

Example

Neamt
|
87
L Iasi
92
L Vaslui
142
211
08
85 m . Hirsova
101 Urziceni
- 86
Bucharest
90 .
] Giurgiu Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

366

160
242
161
176

77
151
226
244

241
234
380
100
193
253
329

199
374

Stright-line distances

to Bucharest

Start state

Expand states in order of their distance to the goal

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal

Start state

Heuristic: h(s)

Expand states in order of their distance t0 thegom

K

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal

~

Greedy search

Greedy Search

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

— heuristic: h(s) <«mm ie.distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.

Greedy Search

This is like a guess about how far
the state is from the goal

3

= m m m m m = m

Each time you expand a state, calculate the:heuristic:for

each of the states that you add to the fringe.

— heuristic: h(s) <«mm ie.distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.

Example: Greedy Search

(a) The initial state

366

Example: Greedy Search

(b) After expanding Arad

253 329 374

Example: Greedy Search

(c) After expanding Sibiu Arad D

CSibiu_> Climisoara CZerind 3

329 374

366 176 380

193

Example: Greedy Search

(d) After expanding Fagaras Arad D

374

Path: A-S-F-B

Example: Greedy Search

] Oradea
71 Neamt
|
[| 87
75 151
LJd Iasi
Arad
92
-~ Sibiu 99 Fagaras
118 L1 Vaslui
80
Timis Rimnicu Vilcea
imisoara =
142
s g 211
111 1 Lugoj Pitesti
[
70 98 .
) 85 Hirsova
| | Mehadia 101 Urziceni
[
86
75 138 Bucharest
Drobeta [] 120
B 90
Craiova [] Giurgiu Efore

Path: A-S-F-B

Notice that this is not the optimal path!

Example: Greedy Search

Arad [

118 L Vaslui

" Timisoara

L] Hirsova

Eforie

Notice that this is not the optimal path!

Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow

Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow

Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow

Greedy vs UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy vs UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Greedy vs UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

A*

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

A*

S . a State

g(s) : minimum cost from start to

h(s) : heuristic at (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of 9(5)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)

A*

UCS: expand states in order of g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)

A*

UCS: expand states in order of g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)

A*

A*: expand states in order of f(s5) = g(s) + h(s)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Is A* optimal?

What went wrong?
Actual cost-to-go < heuristic
The heuristic must be less than the actual cost-to-go!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Recall:
— In tree search, we do not track the explored set
— In graph search, we do

Recall: Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node +— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+—a FIFO queue with node as the only element

frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorlthm

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.f

T

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.f

T

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorlthm

Admissibility: Example

Arad 366

Bucharest 0

[] Oradea Craiova 160
Drobeta 242

Eforie 161

Fagaras 176

75) Giurgiu 77
Arad [Hil:sova 151
Lasi 226

Lugoj 244

i N Vi Mehadia 241
Neamt 234

Timisoara Oradea 380

= Pitesti 100
_ Rimmnicu Vilcea 193

e Sibiu 253

- Timisoara 329

[] Mchadia Th e Hirsova ggz:ztiam 133

» Bucharest - Zerind 374

Drobeta []

Craiova

[] Giurgiu Eforie

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

Arad 366

Bucharest 0

Craiova 160

Drobeta 2472

Eforie 161

Fagaras 176

B Giurgiu 77
Arad [Hirsova 151
Iasi 226

Lugoj 244

118 M Vashit Mehadia 241
Neamt 234

Timisoara Oradea 380

- Pitesti 100
Rimnicu Vilcea 193

Sibiu 253

7w Timisoara 329

[] Mehadia Urgicent T g;;::“em . %

7 Bucharest 86 Zerind 374

Drobeta []
Craiova] Giurgiu Eforie |

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
75 Giurgiu 77
Arad B Hil:sova 151
Iasi 226
Lugoj 244
118 M o Mehadia 241
Neamt 234
i Timisoara Qradt:.a 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
7w %‘imisnara 3%3
i . irsova rziceni
] Mehadia Uericen Vaslui 199
7 Bucharest . Zerind 374

Drobeta []
Craiova] Giurgiu Eforie |

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility: Example

7 2 4 1 2
5 6 > 3 4 5
8 3 1 6 7 8
Start state Goal state
h(s) =7

Can you think of an admissible heuristic for this problem?

Admissibility

5

Why isn't this heuristic admissible?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Consistency

State space graph Search tree

S (0+2)

~

A(l+4) B (1+1)

' '

C(2+1) C(3+1)

' '

G (5+0) G (6+0)

h=0

What went wrong?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Consistency

h(s) <c(s,s")+ h(s)

N

Cost of going from s to s’

O

Consistency

h(s) <c(s,s")+ h(s)

h(s) — h(s") < c(s,s’) €= Rearrange terms

Consistency

h(s) <c(s,s")+ h(s)

h(s) — h(s’/) < ¢(s,)

Cost of going from s to s' R
Implied by heuristic

Actual cost of
going fromsto s’

Consistency

h(s) <c(s,s")+ h(s)

h(s) — h(s’/) < ¢(s,)

Cost of going from s to s' R
Implied by heuristic

Actual cost of
going fromsto s’

Consistency

f(s) = g(s) + h(s)

rd

Consistency implies that the “f-cost” never decreases along any
path to a goal state.
— the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.
Given any goal state, A* expands states that reach the goal

state optimally before expanding states the reach the goal state
suboptimally.

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)

Then: h(sr_1) < c(sr—_1,87)+ h(sT)

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)

Then: h(sr—1) < c(sr—_1,8T)

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)

Then: h(ST—l) < C(ST—L ST) {mmm admissible

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)
Then: h(sr—1) < c(sr—_1,8T)

h(st—2) < c(sT—2,57-1) + h(s7-1)

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)
Then: h(sr—1) < c(sr—_1,8T)

h(sr—2) < c(sp—2,57—1) + h(ST-1)

]

admissible

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)
Then: h(sr—1) < c(sr—_1,8T)

h(sr—2) < c(sp—2,57—1) + h(ST-1)

]]

admissible admissible

Consistency implies admissibility

Suppose: \V/St, St11 -]’L(St) < C(St, St_|_1) + h(St_|_1)
Then: h(sr—1) < c(sr—_1,8T)

h(sr—2) < c(sp—2,57—1) + h(ST-1)

00

A* vs UCS

"Uniform-cost expands
equally in all “directions” @
St Goal

"A* expands mainly
toward the goal, but does StarGoaI
hedge its bets to ensure
optimality

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

A* vs UCS

SCORE: 0 SCORE: 0 SCORE: 0

Greedy UCS A*

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Choosing a heuristic

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!

Choosing a heuristic

Consider the 8-puzzle:

h1 : number of misplaced tiles

ho : sum of manhattan distances
between each tile and its goal.

How much better is ho ?

Choosing a heuristic

Consider the 8-puzzle: 1 2
h1 : number of misplaced tiles 3 A 5
ho : sum of manhattan distances _

between each tile and its goal. 6 7| ®

Average # states expanded on a random depth-24 puzzle:
A*(h1) = 39k

A*(hg) = 1.6k

IDS =3.6M (by depth 12)

Choosing a heuristic

Consider the 8-puzzle: 1 2
h1 : number of misplaced tiles 3 4 5
hs : sum of manhattan distances

between each tile and its goal. 6 17| 8

Zle:

IDS =3.6M (by depth 12)

Choosing a heuristic

Consider the 8-puzzle: 1

h1 : number of misplaced tiles 3 A

ho : sum of manhattan distances _
between each tile and its goal. 6 |l 7

Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:
— solve a relaxed version of the problem

— solve a subproblem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

