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Recap: What is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?
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Recap: BFS/UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Recap: BFS/UCS

Notice that we search equally far in all directions...

It's like this > o

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)
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IS It possible to use additional information to
decide which direction to search in?
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Start state

Expand states in order of their distance to the goal

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal



Start state

Heuristic: h(s)

Expand states in order of their distance t0 thegom

K

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal

~

Greedy search




Greedy Search

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

— heuristic: h(s) <«mm  ie.distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.



Greedy Search

This is like a guess about how far
the state is from the goal

3

= m m m m m = m

Each time you expand a state, calculate the:heuristic:for

--------

each of the states that you add to the fringe.

— heuristic: h(s) <«mm  ie.distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.



Example: Greedy Search

(a) The initial state

366



Example: Greedy Search

(b) After expanding Arad

253 329 374



Example: Greedy Search

(c) After expanding Sibiu Arad D
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Example: Greedy Search

(d) After expanding Fagaras Arad D

374

Path: A-S-F-B



Example: Greedy Search
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Path: A-S-F-B

Notice that this is not the optimal path!
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Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow
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Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)
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Greedy vs UCS

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



A*

Image: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



A*

S . a State

g(s) : minimum cost from start to

h(s) : heuristic at  (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of 9(5)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)
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UCS: expand states in order of g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)



A*

A*: expand states in order of f(s5) = g(s) + h(s)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Is A* optimal?

What went wrong?
Actual cost-to-go < heuristic
The heuristic must be less than the actual cost-to-go!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Recall:
— In tree search, we do not track the explored set
— In graph search, we do



Recall: Breadth first search (BFS)

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node +— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+—a FIFO queue with node as the only element

--------------------

frontier «— INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.

What is the purpose of the explored set?
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Admissibility: Example

7 2 4 1 2
5 6 > 3 4 5
8 3 1 6 7 8
Start state Goal state
h(s) =7

Can you think of an admissible heuristic for this problem?



Admissibility

5

Why isn't this heuristic admissible?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Consistency

State space graph Search tree

S (0+2)

~

A(l+4) B (1+1)

' '

C(2+1) C(3+1)

' '

G (5+0) G (6+0)

h=0

What went wrong?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Consistency

h(s) <c(s,s")+ h(s)

N

Cost of going from s to s’

O




Consistency

h(s) <c(s,s")+ h(s)

h(s) — h(s") < c(s,s’) €= Rearrange terms
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Implied by heuristic

Actual cost of
going fromsto s’
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Consistency

f(s) = g(s) + h(s)

rd

Consistency implies that the “f-cost” never decreases along any
path to a goal state.
— the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.
Given any goal state, A* expands states that reach the goal

state optimally before expanding states the reach the goal state
suboptimally.



Consistency implies admissibility

Suppose: \V/St, St11 - ]’L(St) < C(St, St_|_1) + h(St_|_1)

Then: h(sr_1) < c(sr—_1,87)+ h(sT)
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Consistency implies admissibility

Suppose: \V/St, St11 - ]’L(St) < C(St, St_|_1) + h(St_|_1)

Then: h(ST—l) < C(ST—L ST) {mmm admissible
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Consistency implies admissibility

Suppose: \V/St, St11 - ]’L(St) < C(St, St_|_1) + h(St_|_1)
Then: h(sr—1) < c(sr—_1,8T)

h(sr—2) < c(sp—2,57—1) + h(ST-1)

00



A* vs UCS

"Uniform-cost expands
equally in all “directions” @
St Goal

"A* expands mainly
toward the goal, but does StarGoaI
hedge its bets to ensure
optimality

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



A* vs UCS

SCORE: 0 SCORE: 0 SCORE: 0

Greedy UCS A*

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Choosing a heuristic

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!



Choosing a heuristic

Consider the 8-puzzle:

h1 : number of misplaced tiles

ho : sum of manhattan distances
between each tile and its goal.

How much better is ho ?




Choosing a heuristic

Consider the 8-puzzle: 1 2
h1 : number of misplaced tiles 3 A 5
ho : sum of manhattan distances _

between each tile and its goal. 6 7| ®

Average # states expanded on a random depth-24 puzzle:
A*(h1) = 39k

A*(hg) = 1.6k

IDS =3.6M (by depth 12)
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Zle:

IDS =3.6M (by depth 12)



Choosing a heuristic

Consider the 8-puzzle: 1

h1 : number of misplaced tiles 3 A

ho : sum of manhattan distances _
between each tile and its goal. 6 |l 7

Why not use the actual cost to goal as a heuristic?



How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:
— solve a relaxed version of the problem

— solve a subproblem
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