

Graph Search

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

What is a graph?

Graph:

Edges:

Vertices:

Directed graph

What is a graph?

Graph:

Edges:

Vertices:

Undirected graph

What is a graph?

Graph:

Edges:

Vertices: Also called states

Also called transitions

Defining a graph: example

Defining a graph: example

How many states?

Defining a graph: example

Defining a graph: example

Pairs of states that are “connected”
by one turn of the cube.

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state

How?

A search tree

Start at A

A search tree

Successors of A

A search tree

Successors of A

parent children

A search tree

Let's expand S
next

A search tree

Successors
of S

A search tree

A was already
visited!

A search tree

A was already
visited!So, prune it!

A search tree

In what order should we expand states?

– here, we expanded S, but we could also have expanded Z or T

– different search algorithms expand in different orders

Breadth first search (BFS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Breadth first search (BFS)

Breadth first search (BFS)

Start node

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

We're going to maintain a queue called the fringe

– initialize the fringe as an empty queue

Fringe

Breadth first search (BFS)

– add A to the fringe

fringe
Fringe
A

Breadth first search (BFS)

-- remove A from the fringe

-- add successors of A to the fringe

fringe

Fringe
B
C

Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe

fringe

Fringe
C
D
E

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

-- remove C from the fringe

-- add successors of C to the fringe

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)

Breadth first search (BFS)

Breadth first search (BFS)

What is the purpose of the explored set?

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity = ???

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity = ???

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

Another BFS example...

Uniform Cost Search (UCS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Uniform Cost Search (UCS)

Notice the distances between cities

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?
UCS!

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of How?

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
– the priority of each element in the queue is its path cost.

Uniform Cost Search (UCS)

UCS

Fringe
A

Path Cost
0

Explored set:

UCS

140 118
75

Explored set: A

Fringe
A
S
T
Z

Path Cost
0
140
118
75

UCS

140 118
75

146

Explored set: A, Z

Fringe
A
S
T
Z
T

Path Cost
0
140
118
75
146

UCS

140 118
75

146229

Explored set: A, Z, T

Fringe
A
S
T
Z
T
L

Path Cost
0
140
118
75
146
229

UCS

140 118
75

239 220 146229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220

UCS

140 118
75

239 220 146229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220

UCS

140 118
75

239 220

336 317

146229

Explored set: A, Z, T, S, R

Fringe
A
S
T
Z
T
L
F
R
C
P

Path Cost
0
140
118
75
146
229
239
220
336
317

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue
– NOT when the goal state is expanded

UCS

UCS Properties

Is UCS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– C*: cost of optimal sol'n
– e: min one-step cost
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

UCS vs BFS

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

UCS vs BFS

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand
a shallowest node
first

Implementation:
Fringe is a FIFO
queue

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

UCS vs BFS

Start Goal

…

c 3

c 2
c 1 Remember: UCS explores

increasing cost contours

 The good: UCS is complete and
optimal!

 The bad:
 Explores options in every

“direction”
 No information about goal

location

 We’ll fix that soon!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Depth First Search (DFS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

DFS

fringe
Fringe
A

DFS

fringe

Fringe
A
B
C

DFS

fringe

Fringe
A
B
C
F
G

DFS

Fringe
A
B
C
F
G
H
I

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

What kind of a queue is this?

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

What kind of a queue is this? LIFO Queue!
(last in first out)

DFS vs BFS: which one is this?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

DFS vs BFS: which one is this?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

DFS Properties: Graph search version

Is DFS complete?
– only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
– how many states are expanded before finding a sol'n?

– complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
– how much memory is required?

– complexity = number of states in the graph

Is DFS optimal?
– is it guaranteed to find the best solution (shortest path)?

This is the “graph search”
version of the algorithm

DFS Properties: Graph search version

Is DFS complete?
– only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
– how many states are expanded before finding a sol'n?

– complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
– how much memory is required?

– complexity = number of states in the graph

Is DFS optimal?
– is it guaranteed to find the best solution (shortest path)?

This is the “graph search”
version of the algorithm

So why would we ever use this algorithm?

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity = This is why we might

want to use DFS

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

Is it complete?

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

Is it complete? NO!

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

Is it complete? NO!
What do we do???

IDS: Iterative deepening search

What is IDS?
– do depth-limited DFS in stages, increasing the maximum
depth at each stage

IDS: Iterative deepening search

What is IDS?
– do depth-limited DFS in stages, increasing the maximum
depth at each stage

What is depth limited search?
– any guesses?

IDS: Iterative deepening search

What is IDS?
– do depth-limited DFS in stages, increasing the maximum
depth at each stage

What is depth limited search?
– do DFS up to a certain pre-specified depth

IDS: Iterative deepening search

…
b

 Idea: get DFS’s space advantage
with BFS’s time / shallow-solution
advantages
 Run a DFS with depth limit 1. If

no solution…
 Run a DFS with depth limit 2. If

no solution…
 Run a DFS with depth limit 3.

…..

 Isn’t that wastefully redundant?
 Generally most work happens in

the lowest level searched, so
not so bad!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

IDS

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

Is it complete?

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

Is it complete? YES!!!

Is it optimal?

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a sol'n?

– complexity =

Is it complete? YES!!!

Is it optimal? YES!!!

The One Queue

 All these search algorithms
are the same except for fringe
strategies
 Conceptually, all fringes

are priority queues (i.e.
collections of nodes with
attached priorities)

 Practically, for DFS and
BFS, you can avoid the
log(n) overhead from an
actual priority queue, by
using stacks and queues

 Can even code one
implementation that takes
a variable queuing object

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Search and Models

 Search operates over
models of the world
 The agent doesn’t

actually try all the
plans out in the real
world!

 Planning is all “in
simulation”

 Your search is only
as good as your
models…

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Search Gone Wrong?

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	The One Queue
	Search and Models
	Search Gone Wrong?

