
  

Constraint Satisfaction Problems

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

What is a CSP?

The space of all search 
problems
– states and actions are 

atomic
– goals are arbitrary sets of 

states

CSPs All search problems

The space of all CSPs
– states are defined in 

terms of variables
– goals are defined in terms 

of constraints

A CSP is defined by:
1. a set of variables and their associated domains
2. a set of constraints that must be satisfied.



  

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent 
territories have the same color

Variables:

Domain of variables:

Constraints:



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?

Is there a better way?



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for each row

A number between 1 and 8

Enumeration of disallowed configurations

– why is this representation better?

1

2

3

4

5

6

7

8



  

The constraint graph

Variables represented as nodes (i.e. as circles)

Constraint relations represented as edges

– map coloring is a binary CSP, so it's easier to represent...



  

A harder CSP to represent: Cryptarithmetic

 Variables:

 Domains:

 Constraints:

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Another example: sudoku

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch 
of pairwise inequality 
constraints)



  

Naive solution: apply BFS, DFS, A*, ...

Which would be better: BFS, DFS, A*?

– remember: it doesn't know if it reached 
a goal until all variables are assigned ...



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?

This sucks.
How can we improve it?



  

Backtracking search

When a node is expanded, check that each successor state 
is consistent before adding it to the queue.



  

Backtracking search

When a node is expanded, check that each successor state 
is consistent before adding it to the queue.

Does this state have any 
valid successors?



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens



  

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?



  

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?

Yes: keep track of viable variable assignments as you go



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

But, failure was inevitable here!
– what did we miss?



  

Arc consistency

 An arc X  Y is consistent iff for every x in the tail there is 
some y in the head which could be assigned without 
violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to 
each new assignment

Delete from the tail!

WA
SA

NT Q

NSW
V

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Arc consistency

 An arc X  Y is consistent iff for every x in the tail there is 
some y in the head which could be assigned without 
violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to 
each new assignment

Delete from the tail!

WA
SA

NT Q

NSW
V

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Forward checking

But, failure was inevitable here!
– what did we miss?



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

WA
SA

NT Q

NSW
V

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that
could be assigned w/o violating a constraint.



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

WA
SA

NT Q

NSW
V

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that
could be assigned w/o violating a constraint.



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

WA
SA

NT Q

NSW
V

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that
could be assigned w/o violating a constraint.



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

WA
SA

NT Q

NSW
V

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that
could be assigned w/o violating a constraint.



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

WA
SA

NT Q

NSW
V

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that
could be assigned w/o violating a constraint.



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

WA
SA

NT Q

NSW
V

Conflict!

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that
could be assigned w/o violating a constraint.



  

Arc consistency

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A simple form of propagation makes sure all arcs are 
consistent:

 Important: If X loses a value, neighbors of X need to be 
rechecked!

 Arc consistency detects failure earlier than forward 
checking

 Can be run as a preprocessor or after each assignment 
 What’s the downside of enforcing arc consistency?

WA
SA

NT Q

NSW
V

Conflict!



  

Arc consistency

Why does this algorithm converge? 



  

Arc consistency does not detect all 
inconsistencies...

 After enforcing arc 
consistency:
 Can have one solution left
 Can have multiple solutions 

left
 Can have no solutions left 

(and not know it)

 Arc consistency still runs 
inside a backtracking search!

What went 
wrong here?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first



  

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change 
under A.C.

– choose value that contrains neighboring domains 
the least



  

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change 
under A.C.

– choose value that contrains neighboring domains 
the least

The combination of MRV and 
LCV w/ backtracking can solve 

the 1000-queens problem



  

Using structure to reduce problem complexity

In general, what is the complexity of solving a CSP using backtracking?

(in terms of # variables, n, and max domain size, d)

But, sometimes CSPs have special structure that makes them simpler!



  

When the constraint graph is a tree

This CSP is easier to solve than the general case...



  

When the constraint graph is a tree

1. Do a topological sort
– a partial ordering over variables

i. choose any node as the root
ii. list children after their parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

ok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

ok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

okok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

okok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

okok



  

When the constraint graph is a tree

3. Now, start at the root and do backtracking
– will backtracking ever actually backtrack?

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

okok

So, what's the time complexity of this algorithm?



  

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
– is there anything we can do?

But, sometimes CSPs have special structure that makes them simpler!



  

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
– is there anything we can do?

This is not a tree...



  

Cutset conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual 
CSPs (tree structured)

Choose a cutset

1. Turn the graph into a tree by assigning values to a subset of 
variables

2. For each assignment to the subset, prune domains of the rest 
of the variables and solve the sub-problem CSP.

– what does efficiency of this approach depend on?

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Cutset conditioning

How many variables need to be assigned to turn 
this graph into a tree?

Image: Berkeley CS188 course notes (downloaded Summer 2015)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

