Constraint Satisfaction Problems

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

Image: Berkeley CS188 course notes (downloaded Summer 2015)
What is a CSP?

A CSP is defined by:

1. a set of variables and their associated domains
2. a set of constraints that must be satisfied.
CSP example: map coloring

Problem: assign each territory a color such that no two adjacent territories have the same color

Variables: \(X = \{WA, NT, Q, NSW, V, SA, T\} \)

Domain of variables: \(D = \{r, g, b\} \)

Constraints: \(C = \{SA \neq WA, SA \neq NT, SA \neq Q, \ldots \} \)
CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two queens threaten each other

Variables: $X = ?$

Domain of variables: $D = ?$

Constraints: $C = ?$
CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two queens threaten each other

Variables: $X = \text{One variable for every square}$

Domain of variables: $D = \text{Binary}$

Constraints: $C = \text{Enumeration of each possible disallowed configuration}$

- why is this a bad way to encode the problem?
CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two queens threaten each other.

Variables:

Domain of variables:

Constraints:

1. One variable for every square
2. Binary
3. Enumeration of each possible disallowed configuration

Is there a better way?

– why is this a bad way to encode the problem?
CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two queens threaten each other

Variables: X = One variable for each row

Domain of variables: D = A number between 1 and 8

Constraints: C = Enumeration of disallowed configurations

– why is this representation better?
The constraint graph

Variables represented as nodes (i.e. as circles)

Constraint relations represented as edges

– map coloring is a binary CSP, so it's easier to represent...
A harder CSP to represent: Cryptarithmetic

- **Variables:**
 \[
 F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3
 \]

- **Domains:**
 \[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\]

- **Constraints:**
 \[
 \text{alldiff}(F, T, U, W, R, O) \\
 O + O = R + 10 \cdot X_1 \\
 \ldots
 \]
Another example: sudoku

- **Variables:**
 - Each (open) square

- **Domains:**
 - \{1,2,...,9\}

- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 (or can have a bunch of pairwise inequality constraints)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
Naive solution: apply BFS, DFS, A*, ...

Which would be better: BFS, DFS, A*?

– remember: it doesn't know if it reached a goal until all variables are assigned ...
Naive solution: apply BFS, DFS, A*, ...

How many leaf nodes are expanded in the worst case?
Naive solution: apply BFS, DFS, A*, ...

How many leaf nodes are expanded in the worst case? \(3^7 = 2187\)
Naive solution: apply BFS, DFS, A*, ...

This sucks.
How can we improve it?

How many leaf nodes are expanded in the worst case? \(3^7 = 2187\)
Backtracking search

When a node is expanded, check that each successor state is consistent before adding it to the queue.
Backtracking search

When a node is expanded, check that each successor state is consistent before adding it to the queue. Does this state have any valid successors?
Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
 return BACKTRACK({}, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment then
 add \{var = value\} to assignment
 inferences ← INERENCE(csp, var, value)
 if inferences ≠ failure then
 add inferences to assignment
 result ← BACKTRACK(assignment, csp)
 if result ≠ failure then
 return result
 remove \{var = value\} and inferences from assignment
 return failure

– backtracking enables us the ability to solve a problem as big as 25-queens
Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?
Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?

Yes: keep track of viable variable assignments as you go
Forward checking

Track domain for each unassigned variable
 – initialize with domains from problem statement
 – each time you expand a node, update domains of all unassigned variables
Forward checking

Track domain for each unassigned variable
 – initialize w/ domains from problem statement
 – each time you expand a node, update domains of all unassigned variables
Forward checking

Track domain for each unassigned variable
- initialize w/ domains from problem statement
- each time you expand a node, update domains of all unassigned variables
Forward checking

Track domain for each unassigned variable
- initialize w/ domains from problem statement
- each time you expand a node, update domains of all unassigned variables
But, failure was inevitable here!
– what did we miss?
Arc consistency

- An arc $X \rightarrow Y$ is **consistent** iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

- Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
Arc consistency

- An arc $X \rightarrow Y$ is **consistent** iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

- Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
Forward checking

But, failure was inevitable here!
– what did we miss?
Arc consistency

- A simple form of propagation makes sure all arcs are consistent:

Delete values from tail in order to make each arc consistent.

Consistent: for every value in the tail, there is some value in the head that could be assigned w/o violating a constraint.
Arc consistency

- A simple form of propagation makes sure all arcs are consistent:

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that could be assigned w/o violating a constraint.
Arc consistency

- A simple form of propagation makes sure **all arcs are consistent**:

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that could be assigned w/o violating a constraint.
Arc consistency

- A simple form of propagation makes sure all arcs are consistent:

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that could be assigned w/o violating a constraint.
Arc consistency

- A simple form of propagation makes sure all arcs are consistent:

Consistent: for every value in the tail, there is some value in the head that could be assigned w/o violating a constraint.
Arc consistency

- A simple form of propagation makes sure all arcs are consistent:

Delete values from tail in order to make each arc consistent

Consistent: for every value in the tail, there is some value in the head that could be assigned w/o violating a constraint.
Arc consistency

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?
Arc consistency

function $\text{AC-3}(csp)$ returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: $queue$, a queue of arcs, initially all the arcs in csp

while $queue$ is not empty do
 $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$
 if $\text{REVISE}(csp, X_i, X_j)$ then
 if size of $D_i = 0$ then return false
 for each X_k in X_i.NEIGHBORS - $\{X_j\}$ do
 add (X_k, X_i) to $queue$
 return true

function $\text{REVISE}(csp, X_i, X_j)$ returns true iff we revise the domain of X_i
revised \leftarrow false
for each x in D_i do
 if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then
 delete x from D_i
 revised \leftarrow true
return revised

Why does this algorithm converge?
Arc consistency does not detect all inconsistencies...

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first
Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first
Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first
Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change under A.C.

– choose value that constrains neighboring domains the least
Least constraining value (LCV) heuristic:

- consider how domains of neighbors would change under A.C.
- choose value that constrains neighboring domains the least

The combination of MRV and LCV w/ backtracking can solve the 1000-queens problem.
In general, what is the complexity of solving a CSP using backtracking?

(in terms of # variables, n, and max domain size, d)

But, sometimes CSPs have special structure that makes them simpler!
When the constraint graph is a tree

This CSP is easier to solve than the general case...
When the constraint graph is a tree

1. Do a *topological sort*
 – a partial ordering over variables

i. choose any node as the root
 ii. list children after their parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)
When the constraint graph is a tree

2. make the graph *directed arc consistent* – start w/ the tail and make each variable arc consistent wrt its parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)
When the constraint graph is a tree

2. make the graph *directed arc consistent* – start w/ the tail and make each variable arc consistent wrt its parents
When the constraint graph is a tree

2. make the graph *directed arc consistent* – start w/ the tail and make each variable arc consistent wrt its parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)
When the constraint graph is a tree

2. make the graph *directed arc consistent* – start w/ the tail and make each variable arc consistent wrt its parents
When the constraint graph is a tree

2. make the graph *directed arc consistent* – start w/ the tail and make each variable arc consistent wrt its parents
When the constraint graph is a tree

2. make the graph *directed arc consistent*
 – start w/ the tail and make each variable arc consistent wrt its parents

![Diagram of directed graph](Image: Berkeley CS188 course notes (downloaded Summer 2015))
When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc consistent wrt its parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)
When the constraint graph is a tree

3. Now, start at the root and do backtracking – will backtracking ever actually backtrack?

So, what's the time complexity of this algorithm?
Using structure to reduce problem complexity

But, what if the constraint graph is not a tree? – is there anything we can do?

But, sometimes CSPs have special structure that makes them simpler!
Using structure to reduce problem complexity

But, what if the constraint graph is not a tree? – is there anything we can do?

This is not a tree...
Cutset conditioning

1. Turn the graph into a tree by assigning values to a subset of variables
2. For each assignment to the subset, prune domains of the rest of the variables and solve the sub-problem CSP.
 – what does efficiency of this approach depend on?
Cutset conditioning

How many variables need to be assigned to turn this graph into a tree?