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Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference
 Enumeration (exact, exponential 

complexity)
 Variable elimination (exact, worst-case 

exponential complexity, often better)
 Inference is NP-complete
 Sampling (approximate)

 Learning Bayes’ Nets from Data



 Examples:

 Posterior probability

 Most likely explanation:

Inference

 Inference: calculating 
some useful quantity from 
a joint probability 
distribution



Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables: All 

variables

* Works fine 
with multiple 
query 
variables, too

 We want:

Step 1: Select the 
entries consistent 
with the evidence

 Step 2: Sum out H to get 
joint of Query and 
evidence

 Step 3: 
Normalize



Inference by Enumeration in Bayes’ Net
 Given unlimited time, inference in BNs is easy

 Reminder of inference by enumeration by example:

B E

A

MJ



Inference by Enumeration?



Inference by Enumeration vs. Variable Elimination

 Why is inference by enumeration 
so slow?
 You join up the whole joint distribution 

before you sum out the hidden 
variables

 Idea: interleave joining and 
marginalizing!
 Called “Variable Elimination”
 Still NP-hard, but usually much faster 

than inference by enumeration

 First we’ll need some new notation: 
factors



Factor Zoo Summary

 In general, when we write P(Y1 … YN | X1 … XM)

 It is a “factor,” a multi-dimensional array

 Its values are P(y1 … yN | x1 … xM)

 Any assigned (=lower-case) X or Y is a dimension missing 
(selected) from the array



Example: Traffic Domain

 Random Variables
 R: Raining
 T: Traffic
 L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Inference by Enumeration: Procedural Outline

 Track objects called factors
 Initial factors are local CPTs (one per node)

 Any known values are selected
 E.g. if we know                  , the initial factors are

 Procedure: Join all factors, then eliminate all hidden variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

 First basic operation: joining factors
 Combining factors:

 Just like a database join
 Get all factors over the joining variable
 Build a new factor over the union of the 

variables involved

 Example: Join on R

 Computation for each entry: pointwise 
products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Example: Multiple Joins



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T



Operation 2: Eliminate

 Second basic operation: 
marginalization

 Take a factor and sum out a 
variable
 Shrinks a factor to a smaller one
 A projection operation

 Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Marginalizing Early (= Variable Elimination)



Traffic Domain

 Inference by 
Enumeration

T

L

R

 Variable Elimination

Join on r

Join on t

Eliminate r

Eliminate t

Join on r

Eliminate r

Join on t

Eliminate t



Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Evidence

 If evidence, start with factors that select that evidence
 No evidence uses these initial factors:

 Computing                        , the initial factors become:

 We eliminate all vars other than query + 
evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Evidence II

 Result will be a selected joint of query and 
evidence
 E.g. for P(L | +r), we would end up with:

 To get our answer, just normalize this!

 That ’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



General Variable Elimination

 Query:

 Start with initial factors:
 Local CPTs (but instantiated by 

evidence)

 While there are still hidden 
variables (not Q or evidence):
 Pick a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and 
normalize



Example

Choose A



Example

Choose E

Finish with B

Normalize



Same Example in Equations

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz
joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz
joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Computational complexity 
critically depends on the largest 
factor being generated in this 
process.  Size of factor = 
number of entries in table.  In 
example above (assuming 
binary) all factors generated 
are of size 2 --- as they all only 
have one variable (Z, Z, and X3 
respectively). 



Variable Elimination Ordering

 For the query P(Xn|y1,…,yn) work through the following two different 
orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  
What is the size of the maximum factor generated for each of the 
orderings?

 Answer: 2n+1 versus 22 (assuming binary)

 In general: the ordering can greatly affect efficiency.  

…

…



VE: Computational and Space Complexity

 The computational and space complexity of variable 
elimination is determined by the largest factor

 The elimination ordering can greatly affect the size of the 
largest factor.  
 E.g., previous slide’s example 2n vs. 2

 Does there always exist an ordering that only results in 
small factors?
 No!



Worst Case Complexity?
 CSP:  

 If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem 
has a solution.

 Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference 
in general.

…

…



Polytrees

 A polytree is a directed graph with no undirected cycles

 For poly-trees you can always find an ordering that is efficient 
 Try it!!

 Cut-set conditioning for Bayes’ net inference

 Choose set of variables such that if removed only a polytree remains
 Exercise: Think about how the specifics would work out!



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference
 Enumeration (exact, exponential 

complexity)
 Variable elimination (exact, worst-

case exponential complexity, often 
better)

 Inference is NP-complete
 Sampling (approximate)

 Learning Bayes’ Nets from Data
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