#### Bayes Networks 3

Robert Platt Northeastern University

All slides in this file are adapted from CS188 UC Berkeley

## Bayes' Nets

#### Representation

- Conditional Independences
- Probabilistic Inference
  - Enumeration (exact, exponential complexity)
  - Variable elimination (exact, worst-case exponential complexity, often better)
  - Inference is NP-complete
  - Sampling (approximate)
- Learning Bayes' Nets from Data

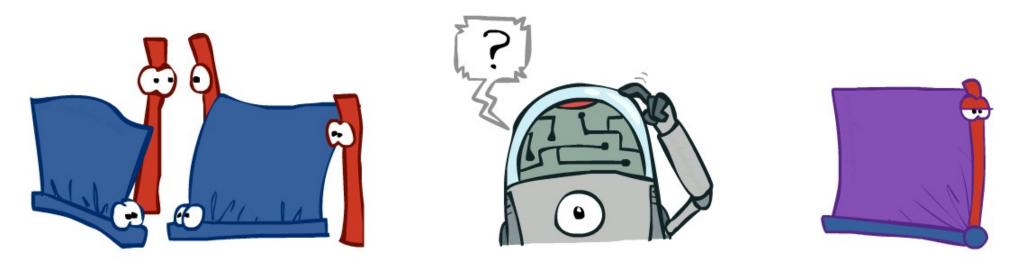
## Inference

 Inference: calculating some useful quantity from a joint probability distribution

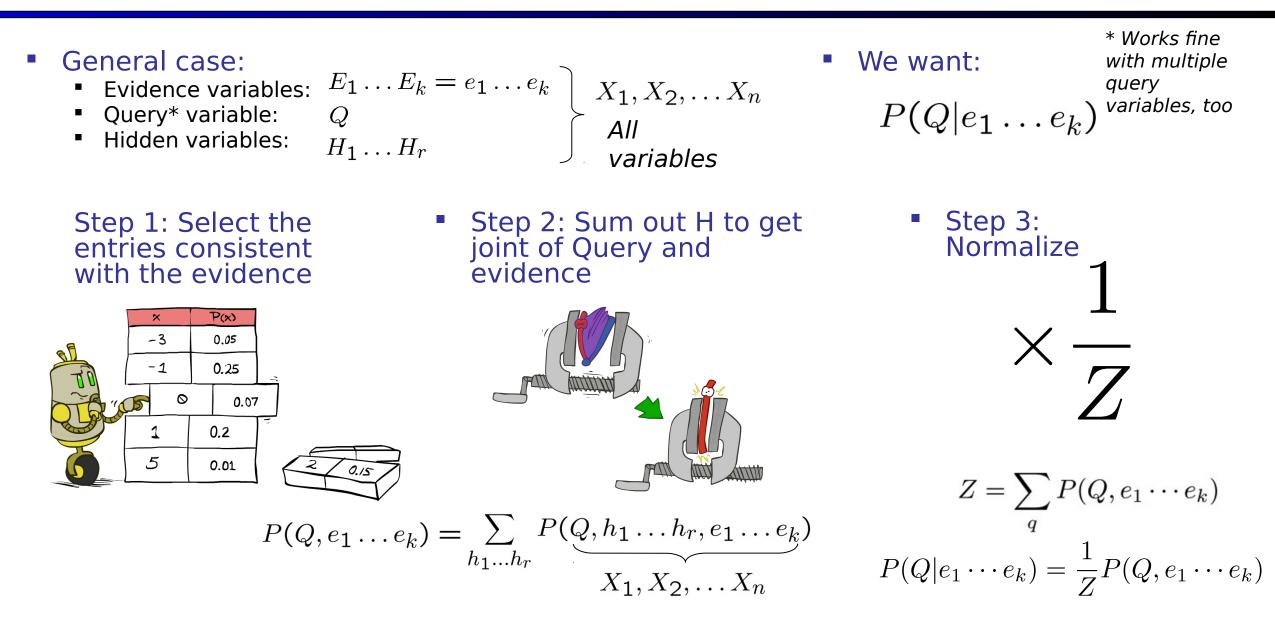
- Examples:
  - Posterior probability

 $P(Q|E_1 = e_1, \dots E_k = e_k)$ 

- Most likely explanation:
  - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$



# Inference by Enumeration



## Inference by Enumeration in Bayes' Net

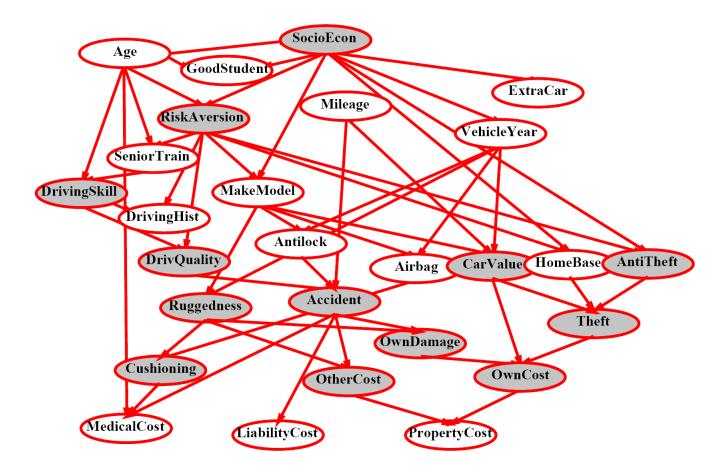
В

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_{B} P(B,+j,+m)$   $= \sum_{e,a} P(B,e,a,+j,+m)$   $= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$  M

=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(-a|

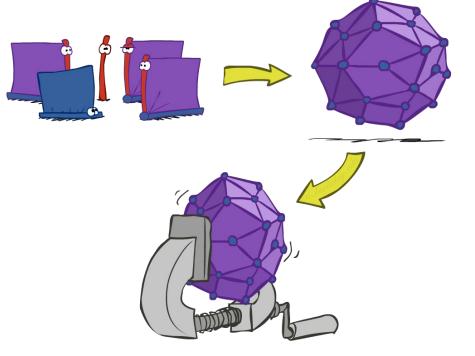
## Inference by Enumeration?



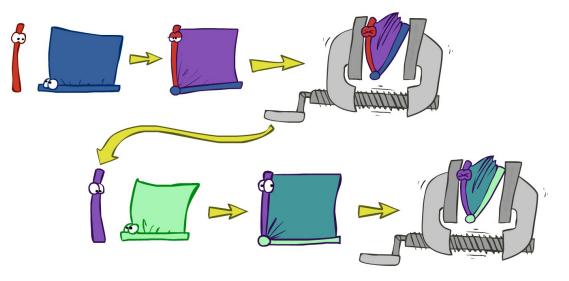
P(Antilock|observed variables) = ?

#### Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



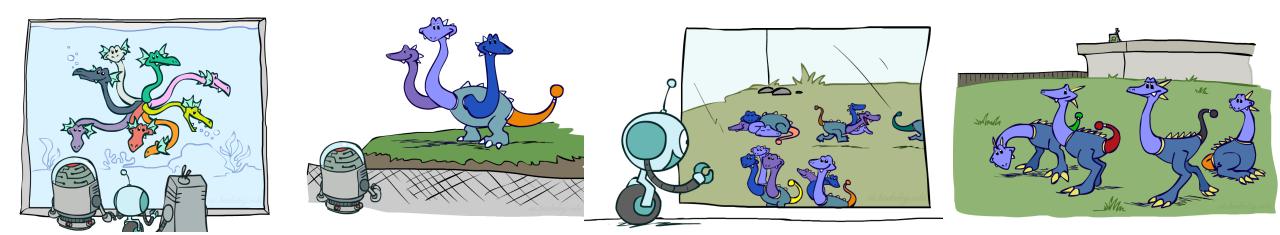
- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration



 First we'll need some new notation: factors

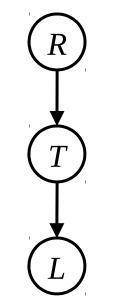
## Factor Zoo Summary

- In general, when we write  $P(Y_1 \dots Y_N | X_1 \dots X_M)$ 
  - It is a "factor," a multi-dimensional array
  - Its values are  $P(y_1 \dots y_N | x_1 \dots x_M)$
  - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

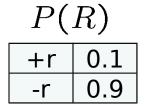


## Example: Traffic Domain

- Random Variables
  - R: Raining
  - T: Traffic
  - L: Late for class!



$$P(L) = ?$$
  
=  $\sum_{r,t} P(r,t,L)$   
=  $\sum_{r,t} P(r)P(t|r)P(L|t)$ 



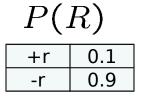


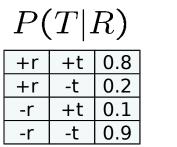
| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

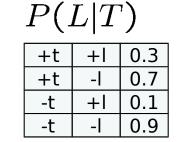
| +t | +1 | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +1 | 0.1 |
| -t | -  | 0.9 |

#### Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)







- Any known values are selected
  - E.g. if we know  $L = +\ell$  , the initial factors are



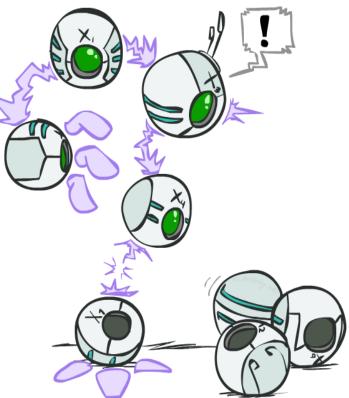
$$P(T|R)$$
  
+r +t 0.8  
+r -t 0.2  
-r +t 0.1

0.9

$$\begin{array}{c|c}
 P(+\ell | T) \\
 +t + I & 0.3 \\
 -t + I & 0.1
 \end{array}$$

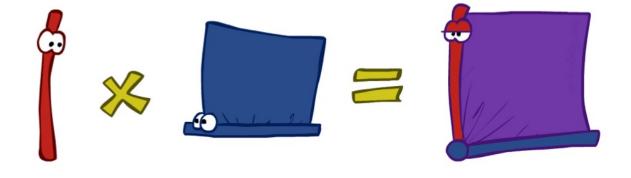
 $\mathbf{D}$ 

Procedure: Join all factors, then eliminate all hidden variables

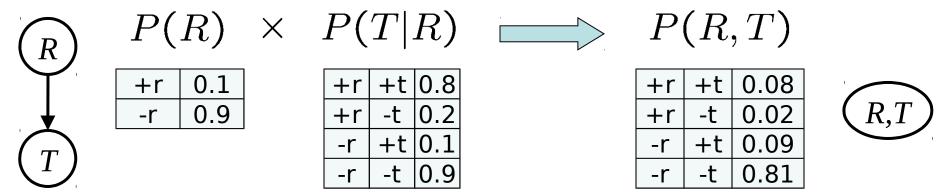


# **Operation 1: Join Factors**

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



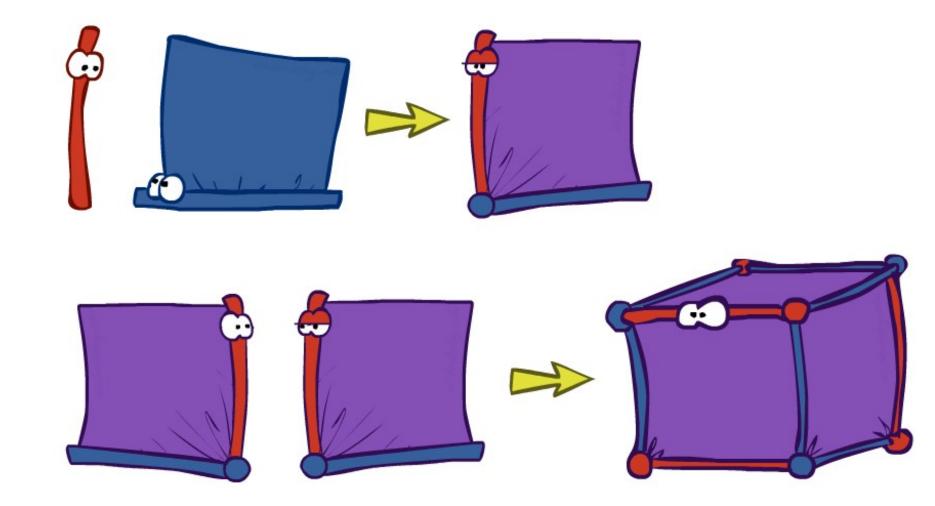
Example: Join on R

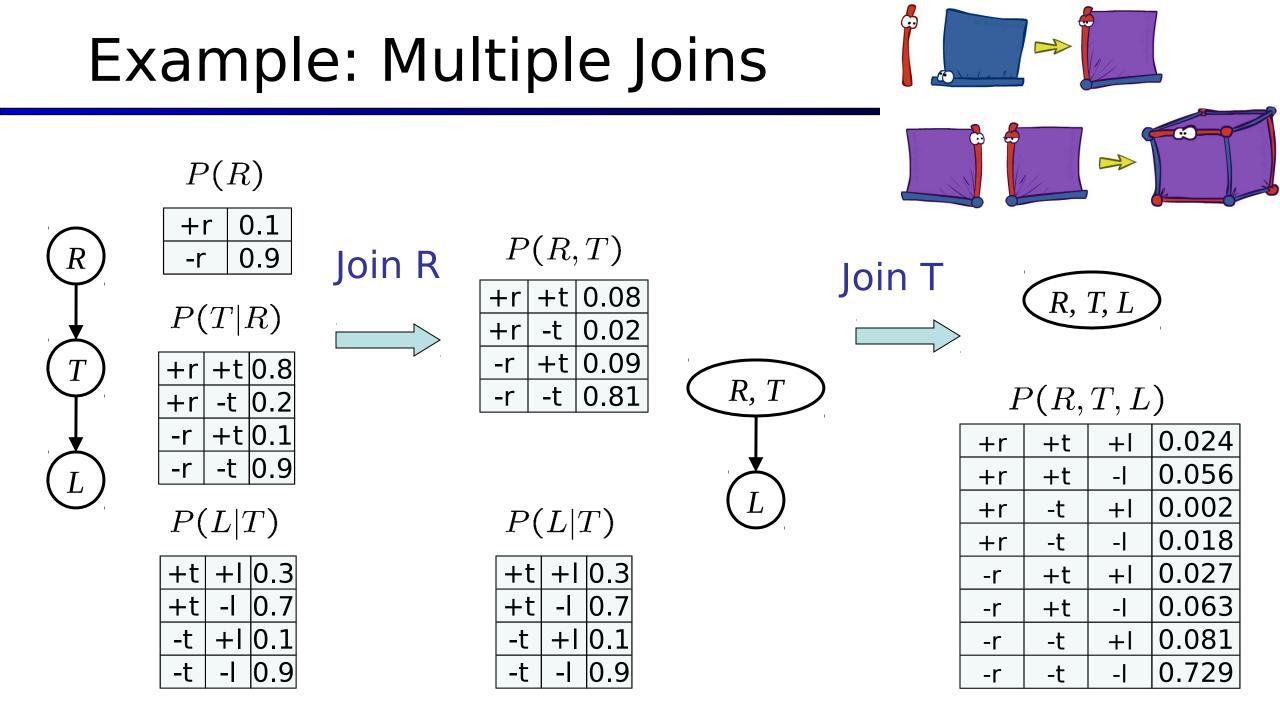


 Computation for each entry: pointwise products

 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$ 

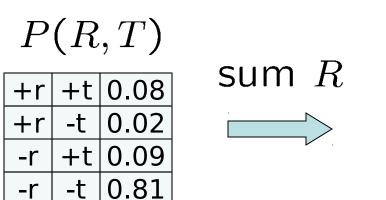
#### Example: Multiple Joins

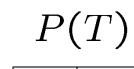


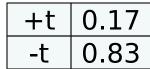


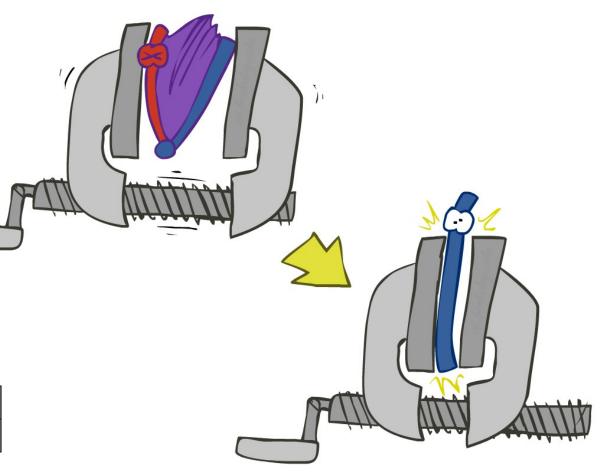
## **Operation 2: Eliminate**

- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:

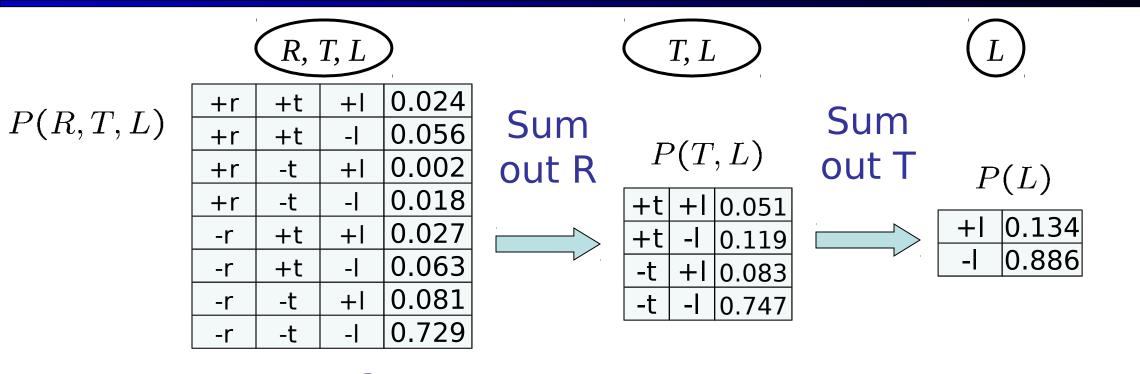


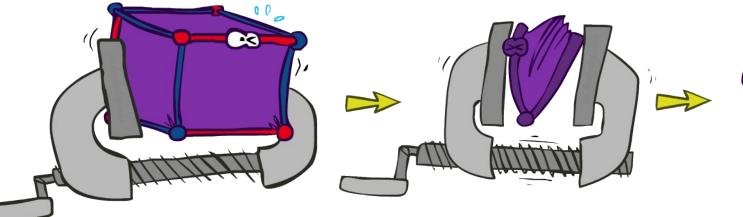




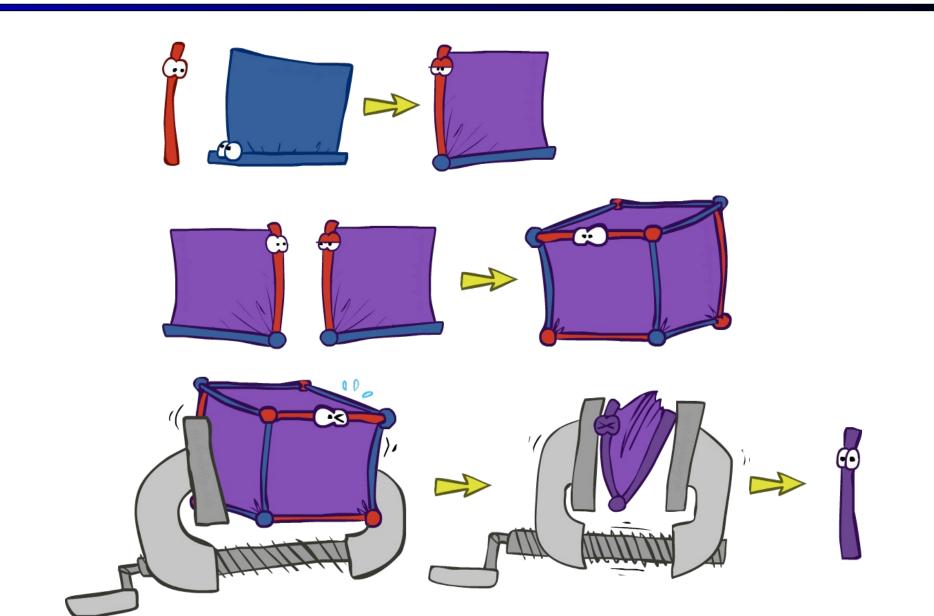


## **Multiple Elimination**

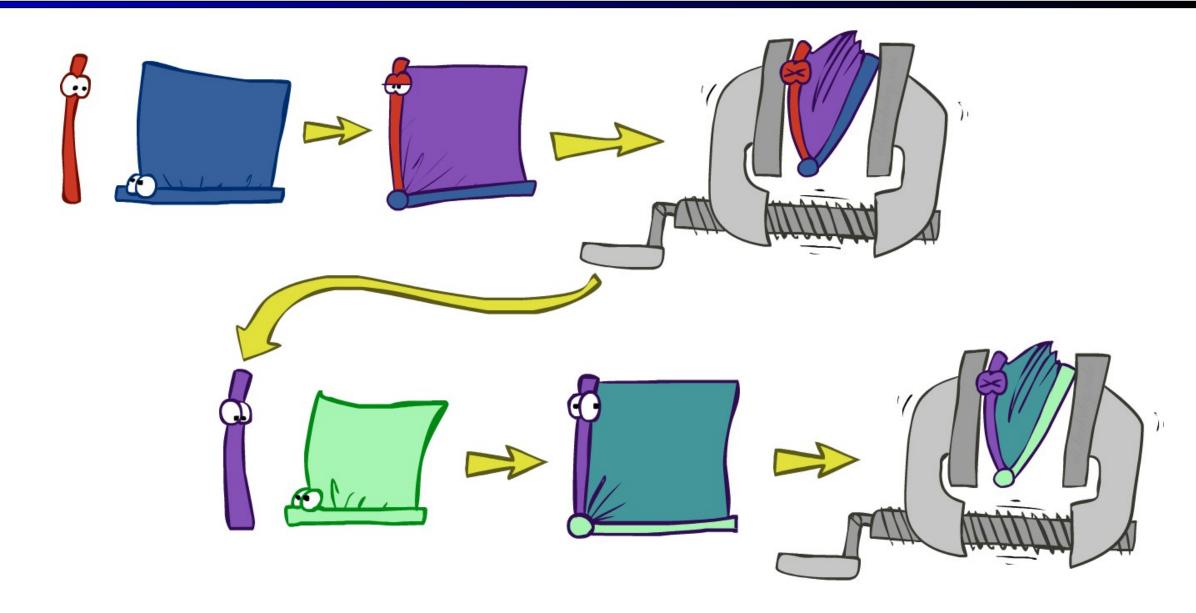




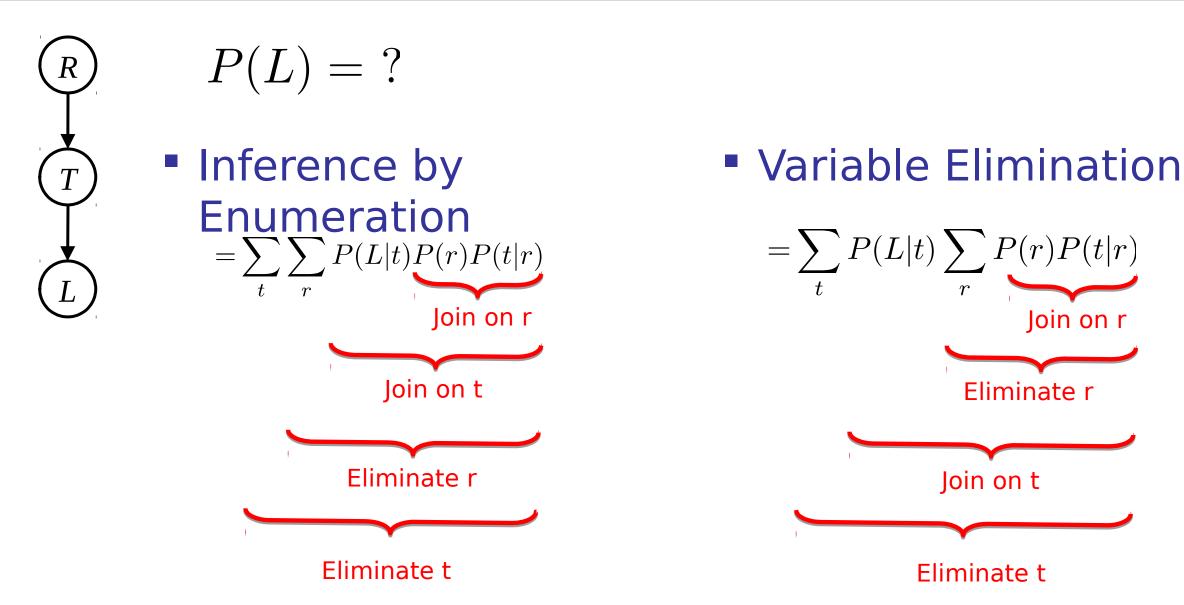
#### Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



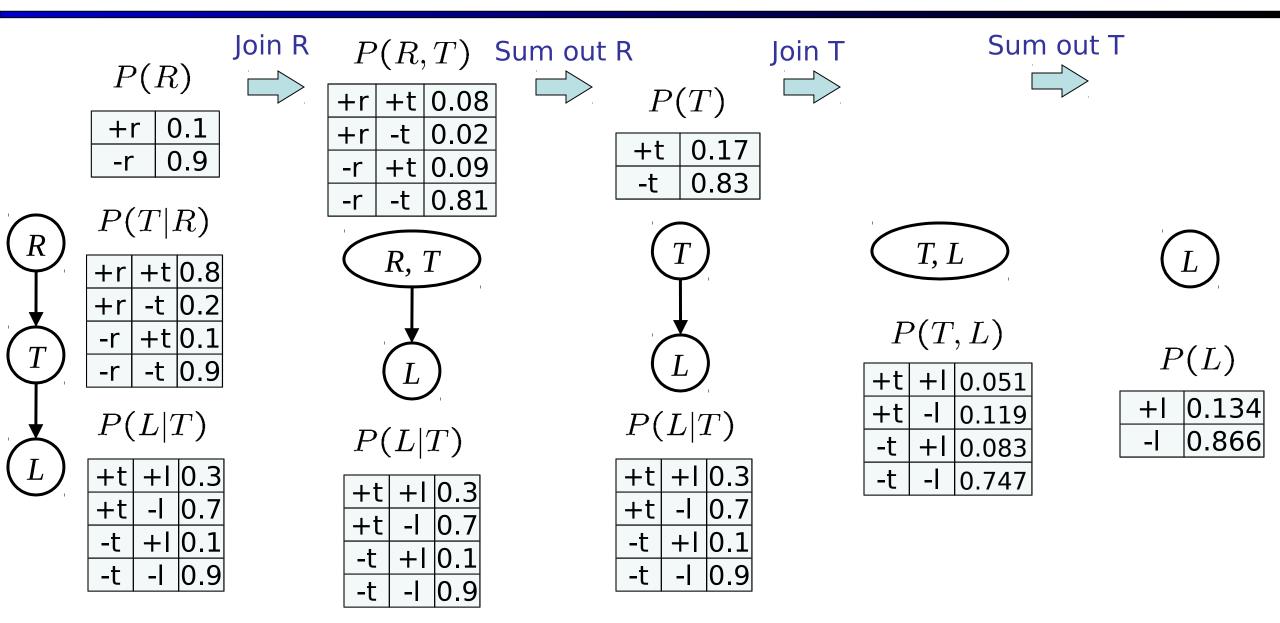
#### Marginalizing Early (= Variable Elimination)



## Traffic Domain

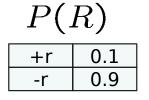


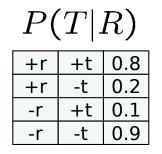
## Marginalizing Early! (aka VE)

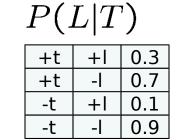


## Evidence

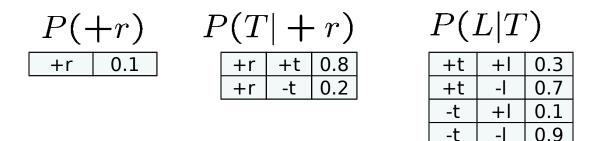
- If evidence, start with factors that select that evidence
  - No evidence uses these initial factors:







• Computing P(L|+r) , the initial factors become:

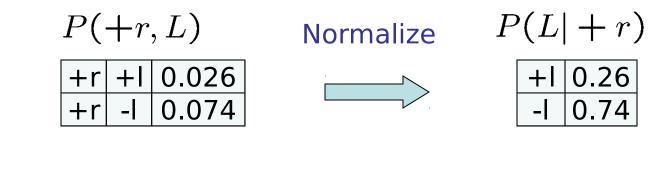




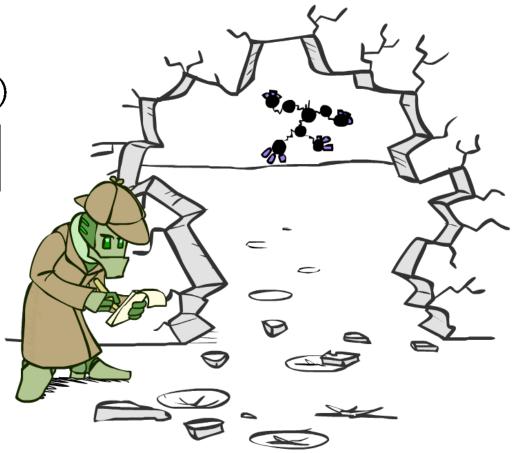
 We eliminate all vars other than query + evidence

# Evidence II

- Result will be a selected joint of query and evidence
  - E.g. for P(L | +r), we would end up with:



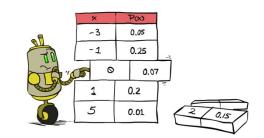
To get our answer, just normalize this!

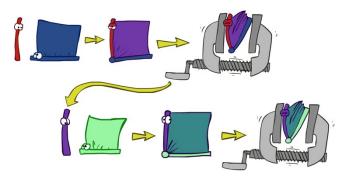


That 's it!

## **General Variable Elimination**

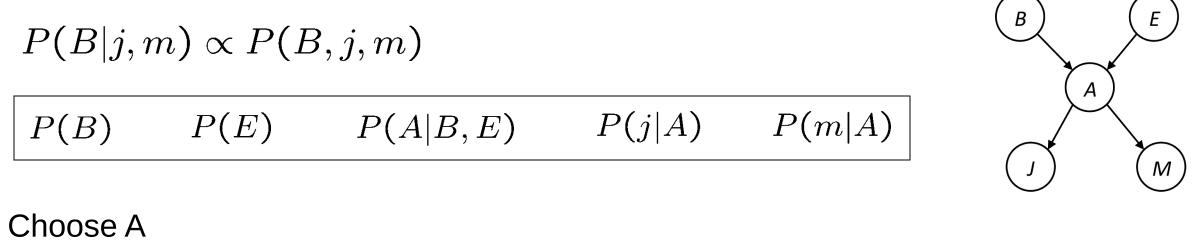
- Query:  $P(Q|E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
  - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
  - Pick a hidden variable H
  - Join all factors mentioning H
  - Eliminate (sum out) H
- Join all remaining factors and normalize







#### Example



$$P(A|B,E)$$

$$P(j|A)$$

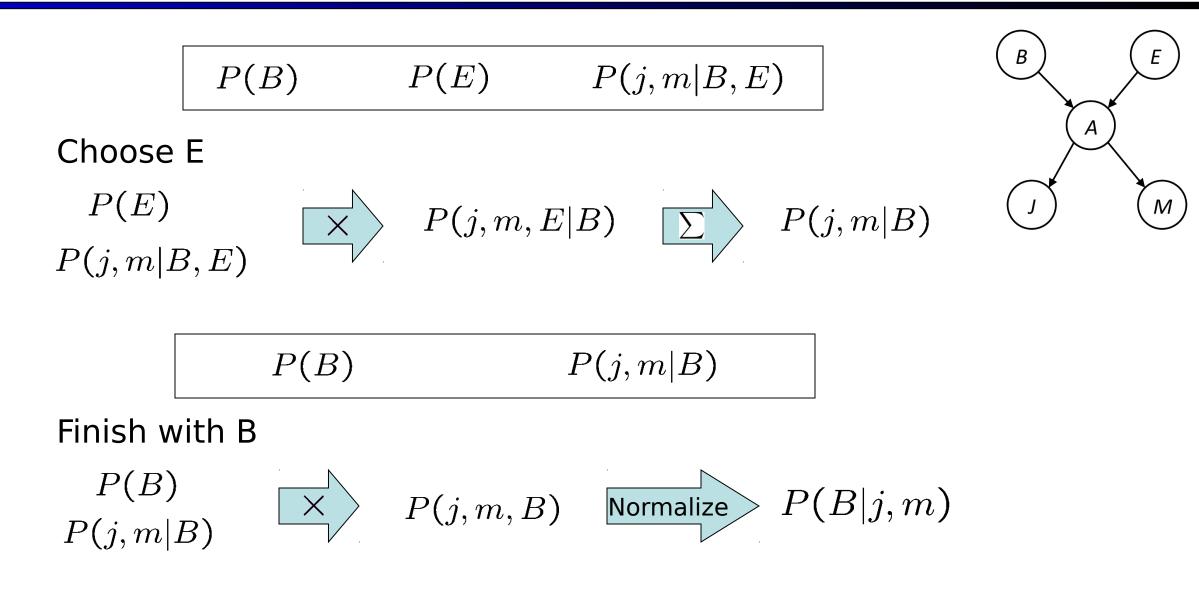
$$P(m|A)$$

$$P(j,m,A|B,E)$$

$$P(j,m|B,E)$$

$$P(B)$$
  $P(E)$   $P(j,m|B,E)$ 

## Example



#### Same Example in Equations

 $P(B|j,m) \propto P(B,j,m)$ 

$$P(B)$$
  $P(E)$   $P(A|B,E)$   $P(j|A)$   $P(m|A)$ 

 $P(B|j,m) \propto P(B,j,m)$ 

 $=\sum_{e,a} P(B,j,m,e,a)$ 

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

marginal can be obtained from joint by summing out

Α

Μ

use Bayes' net joint distribution expression

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B)\sum_{e} P(e)f_1(B, e, j, m)$$
$$= P(B)f_2(B, j, m)$$

use  $x^*(y+z) = xy + xz$ joining on a, and then summing out gives  $f_1$ 

use  $x^*(y+z) = xy + xz$ joining on e, and then summing out gives  $f_{2}$ 

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

#### Another Variable Elimination Example

Query:  $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$ 

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$ 

Eliminate  $X_1$ , this introduces the factor  $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$ , and we are left with:

 $p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$ 

Eliminate  $X_2$ , this introduces the factor  $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$ , and we are left with:

 $p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$ 

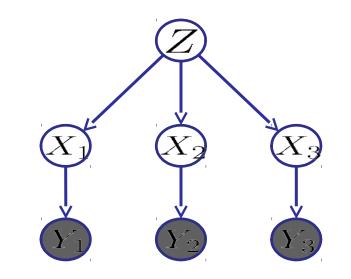
Eliminate Z, this introduces the factor  $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$ , and we are left:

 $p(y_3|X_3), f_3(y_1, y_2, X_3)$ 

No hidden variables left. Join the remaining factors to get:

 $f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$ 

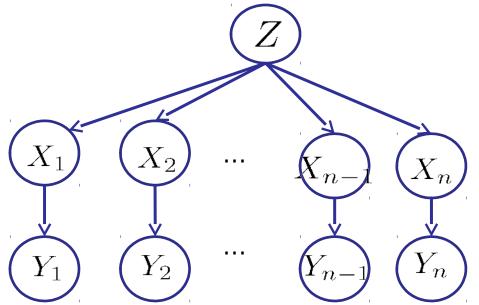
Normalizing over  $X_3$  gives  $P(X_3|y_1, y_2, y_3)$ .



Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and  $X_3$ respectively).

# Variable Elimination Ordering

For the query P(X<sub>n</sub>|y<sub>1</sub>,...,y<sub>n</sub>) work through the following two different orderings as done in previous slide: Z, X<sub>1</sub>, ..., X<sub>n-1</sub> and X<sub>1</sub>, ..., X<sub>n-1</sub>, Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2<sup>n+1</sup> versus 2<sup>2</sup> (assuming binary)
- In general: the ordering can greatly affect efficiency.

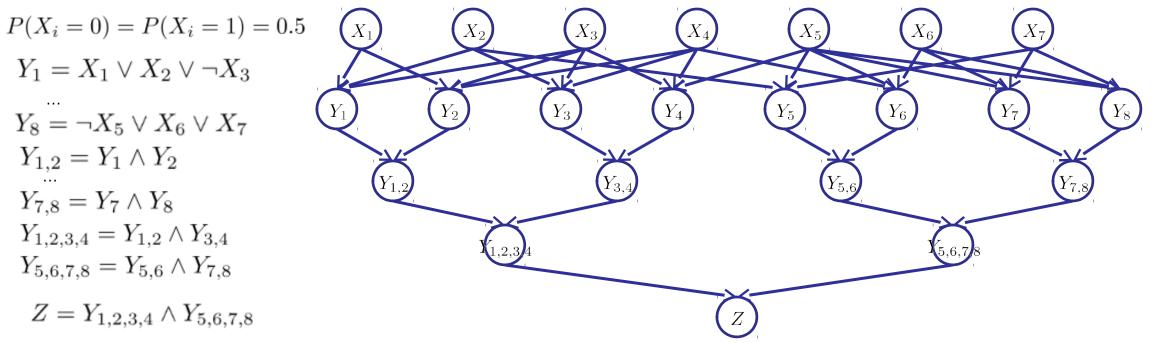
#### VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
  - E.g., previous slide's example 2<sup>n</sup> vs. 2
- Does there always exist an ordering that only results in small factors?
  - No!

## Worst Case Complexity?

#### CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_6 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_6 \lor \neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor$ 



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

## Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
  - Try it!!
- Cut-set conditioning for Bayes' net inference
  - Choose set of variables such that if removed only a polytree remains
  - Exercise: Think about how the specifics would work out!

## Bayes' Nets

#### Representation

- Conditional Independences
- Probabilistic Inference
  - Enumeration (exact, exponential complexity)
  - Variable elimination (exact, worstcase exponential complexity, often better)
  - ✓ Inference is NP-complete
    - Sampling (approximate)
- Learning Bayes' Nets from Data