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Bayes’ Nets

& Representation
& Conditional Independences

* Probabilistic Inference

* Enumeration (exact, exponential
complexity)

* Variable elimination (exact, worst-case
exponential complexity, often better)

* Inference is NP-complete
" Sampling (approximate)

" Learning Bayes’' Nets from Data



Inference

" |Inference: calculating " Examples:
some useful quantity from _ . .
3 joint probability Posterior probability
distribution P(Q|E1 =e1,... B, = ¢y)

" Most likely explanation:

argmax, P(Q =q|E1 =e7...)




Inference by Enumeration

* Works fine

* General case: = We want: with multiple
" Evidence variables: £1---Fx=e€1...e | x. X, .. X, query
= Query* variable: Q P(Q|€ e ) variables, too
. . _ All 1 k
" Hidden variables: Hy...H _
I variables
Step 1: Select the = Step 2: Sum out H to get = Step 3:
entries consistent joint of Query and Normalize
with the evidence evidence 1
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Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e G

" Reminder of inference by enumeration by example:

P(B|+j,+m) xB P(B,+j,+m) Q

—ZP (B,e,a,+j,+m)

= 2 PBIP(P(|B, o P+l P4l

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B, —e)P(+j| + a)P(+m|+a) + P(B)P(—e)P(—a|B,—e)P(+j| — a)P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables) = 7



Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration " |dea: interleave joining and

so slow? marginalizing!

" You join up the whole joint distribution = Called “Variable Elimination”
before you sum out the hidden * Still NP-hard, but usually much faster
variables than inference by enumeration

" First we'll need some new notation:
factors



Factor Zoo Summary

= In general, when we write P(Y, ... Y | X; ... Xy)
" |Itis a “factor,” a multi-dimensional array
= Its values are P(y, ... yy | Xy ... Xy)

= Any assigned (=lower-case) X or Y is a dimension missing
(selected) from the array
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Example: Traffic Domain

* Random Variables fr(RO).l
" R: Raining @ r 0.9
" T: Traffic P(T|R)
= |: Late for class! @ er [ 4e[08
- +t | 0.1
P(L) — 7 Q -r -t |1 0.9
B Z P(r.t, L) +ij(ﬁ||T)o.3
Tt +t| -1 0.7
=" P(r)P(t|r)P(L]t) T Tos




Inference by Enumeration: Procedural Outline

" Track objects called factors
" |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +I1 [ 0.3
-r 0.9 +r| -t 10.2 +t | -l [ 0.7
-r | +t | 0.1 -t | +1 0.1
-r | -t 0.9 -t -1 10.9

" Any known values are selected
" E.g.if we know [ = 4-¢, the initial factors are

P(R) P(T|R) P(+4|T)
+r 0.1 +r | +t | 0.8 +t | +I1 [ 0.3
-r 0.9 +r| -t |0.2 -t | +1 | 0.1
-r | +t (0.1
r t 10.9

" Procedure: Join all factors, then eliminate all hidden variables



Operation 1: Join Factors

" First basic operation: joining factors

= Combining factors:
" Just like a database join % —
" Get all factors over the joining variable

= Build a new factor over the union of the
variables involved

= Example: Joinon R

@ P(R) x P(T|R) —=> P(R,T)

+r | 0.1 +r|+t|0.8 +r| +t|0.08

-r 1 0.9 +r| -t |0.2 +r| -t | 0.02

@ -r | +t|0.1 -r | +t|0.09
-r | -t (0.9 -r | -t [0.81

= Computation for each entry: pointwise
products

vr,t . P(r,t) = P(r) - P(t|r)



Example: Multiple Joins
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Example: Multiple Joins

P(R)

+r

0.1

-I

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+{

0.1

-r

-t

0.9

P(L|T)

+

0.3

0.7

+|

0.1

0.9

Join R

P(R,T)

0.08

0.02

0.09

0.81

P(L|T)

0.3

0.7

0.1

0.9

R, T

(-

Join T
E—

P(R,T,L)

+r | +t | +1 [0.024

+r | +t | -l [0.056

+r | -t | +1 {0.002

+r | -t -1 10.018

-r | +t | +1 [{0.027

-r | +t | -1 [0.063

-r | -t | +1 [{0.081

-r | -t | -l 10.729




Operation 2: Eliminate

Second basic operation:
marginalization
Take a factor and sum out a
variable
* Shrinks a factor to a smaller one
" A projection operation
Example:

P(R,T)
+Tetoog sum R P
+r| -t [{0.02 |:> +t

r|+t|0.09 -t
r|-t|0.81




P(R,T,L)

Multiple Elimination

+r

+|

0.024

+r

0.056

+r

+|

0.002

+r

0.018

+|

0.027

0.063

+1

0.081

1 1 1 1
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0.729

Sum
out R

>

P(T, L)

+|

0.051

0.119

0.083

0.747

Sum
out T

>

W

P(L)

0.134

0.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

(




Marginalizing Early (= Variable Elimination)




Traffic Domain

(R) P(L) =7

@ " Inference by " Variable Elimination
Enumeration
SN P(LIHP(r)P(tr) =Y P(L[t) Y P(r)P(t|r)
o — & ~— p N —rt
Joinonr Joinonr
Joi:gn t EIimi:arte r
| - - _J | — )
Eliminate r Joinon t
- s 7 - - e 78 -

Eliminate t Eliminate t



P(R)

+r [ 0.1

-r 0.9

P(T|R)

Marginalizing Early! (aka VE)

Join R

—>

+r|{+t|0.8

+r| -t |0.2

-r |+t|0.1

-r{ -t 0.9

P(L|T)

+110.3

+t| -1 |0.7

-t |+1]0.1

-t | -11]0.9

P(R,T) Sum outR
ir[+t[0.08] =  P(T)
+r| -t {0.02
r]+10.00 toe]

0.81

G

P(L|T) P(LIT)
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Tl t[+1]0.1
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Join T

—>
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>

P(T,L)

—>
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P(L)

+|
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Evidence

" |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R)  P(L|T)
+r | 0.1 +r| +t 0.8 +t] +1]03 y \
T | 0.9 +r| t [0.2 St | -1 0.7 ) / 0
- _ - 1| 0. Q‘}!g
\
= Computing P(L| 4 r) , the initial factors become: ,"‘,‘ )}
P(+r) P +r) P(L|T) ‘\54'“, = I\
'q, 2 ) L !
+r 0.1 +r | +t | 0.8 +t | +1 [ 0.3 ' / 5 9 ‘
+r| -t (0.2 +t | -l |0.7 = S =
t | +1]0.1 '--.'L v ==
t | -1 |0.9 _—_
= >

" We eliminate all vars other than query +
evidence



Evidence Il

= Result will be a selected joint of query and

evidence
" E.g. for P(L | +r), we would end up with:

P(_I_Ta L) Normalize P(L -|"'“)
+r|+1]/0.026 +1(0.26
sridloo74a] T 110.74

" To get our answer, just normalize this!

= That ’'s it!



General Variable Elimination

" Query: P(Q|E1 = e1,... L = ek)

= Start with initial factors:

= Local CPTs (but instantiated by
evidence)

* While there are still hidden
variables (not Q or evidence):
" Pick a hidden variable H
" Join all factors mentioning H
" Eliminate (sum out) H

= Join all remaining factors and (-m- X VA
normalize



Example

P(B|j,m) « P(B,j,m)

P(B) P(E) P(A|B, E) P@lA)  P(m|A)
Choose A
P(A|B, E)
P(jlA) X > P(j,m,A|B,E) |Y ) P(j,m|B,E)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, &)
Choose E
P(E) ::x> P(j,m, E|B) :z > P(j,m|B)
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m,B) |Normalize > P(B|j, m)



Same Example in Equations

P(B|j,m) « P(B,j,m)

P(B) P(E)  P(AB.E) PG4  P(mlA)
P(Blj,m) P(B,j,m)
Z P(B,j,m,e,a)

> P(B)P() P(a]B, ) PGla) Pl
S P(B)P(e) Y. P(a]B,e) P(jla) P(mla)
S™ P(B)P(e) f1(B. ., m)

P(B)Y P(e)f1(B.c.jim)

P(B) f2(B, j,m)

marginal can be obtained from joint by summing out
use Bayes’ net joint distribution expression

use x*¥(y+z) = xy + xz
joining on a, and then summing out gives f,;

use x*(y+z) = xy + xz
joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Query: P(X3|Y1 =y1,Ye = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
p(Z)p(X1|Z)p(X2|Z)p(X3|Z)p(y1]X1)p(y2| X2)p(y3]| X5)

Eliminate X, this introduces the factor f1(Z,y1) = >_,, p(x1|Z)p(y1|z1), and
we are left with:

p(2) f1(Z,y1)p(X2| Z)p(X3| Z)p(y2| X2)p(ys]| X3)

Eliminate X, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|r2), and
we are left with:

&

09

Computational complexity

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2, 1) f2(2, y2)p(X5l2), factor being generated in this
and we are left: process. Size of factor =
p(ys| Xs), fa(y1, y2, Xs) number of entries in table. In
example above (assuming
No hidden variables left. Join the remaining factors to get: binary) all factors generated
Fil, 5,05, X5) = Plys|s) fili, 15, X5). are of size 2 --- as they all only

have one variable (Z, Z, and X,

Normalizing over X3 gives P(Xs|y1,y2,¥3)- respectively).



Variable Elimination Ordering

= For the query P(X,|y,,-..,Y,) work through the following two different
orderings as done in previous slide: Z, X,, ..., X_; and X, ..., X, Z.
What is the size of the maximum factor generated for each of the

@ @

" Answer: 2"+ versus 22 (assuming binary)

" |In general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

* The computational and space complexity of variable
elimination is determined by the largest factor

* The elimination ordering can greatly affect the size of the
largest factor.

" E.g., previous slide’s example 2" vs. 2

" Does there always exist an ordering that only results in
small factors?
" No!



Worst Case Complexity?

= CSP:

(3}'1 VSCQ V_ng)/\(_ﬂ?l V$3V_|$4)/\($2V_IIC2V$4)/\(_I$3V_|$4V_l.’,€5)A($2V$5V$7)A($4V$5V$6)/\(_IZL‘5V$5V_I$?)/\(_IICE,V_ILUSV.’E?)

Px;i=0)=rPx;i=0=05 () (& G & & (%)

Y, = X,V Xo VX5 S ——Fs ] = 4\\\% \\

Ys = X5V Xg V X7 ;@
12=Y1AYs
RN Q. ©
Y1234=Y12/AY34 8
Yse78 = Y56/ Y78

Z =Y1234NY56.73 @

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem
has a solution.

" Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference
In general.



Polytrees

" A polytree is a directed graph with no undirected cycles

" For poly-trees you can always find an ordering that is efficient
= Try it!!
" Cut-set conditioning for Bayes’ net inference

" Choose set of variables such that if removed only a polytree remains
" Exercise: Think about how the specifics would work out!



Bayes’ Nefts

& Representation
& Conditional Independences

" Probabilistic Inference

& Enumeration (exact, exponential
complexity)

& Variable elimination (exact, worst-
case exponential complexity, often
better)

Inference is NP-complete
" Sampling (approximate)

" Learning Bayes’' Nets from Data
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