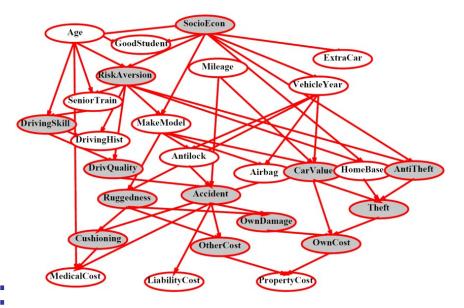
Bayes Networks 2

Robert Platt Northeastern University

All slides in this file are adapted from CS188 UC Berkeley

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain



- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

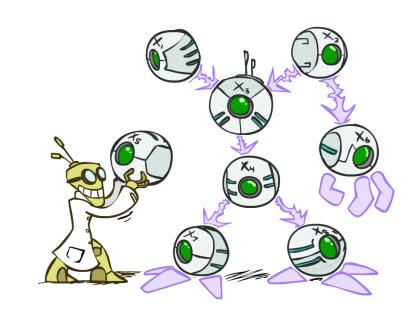
Bayes' Net Semantics

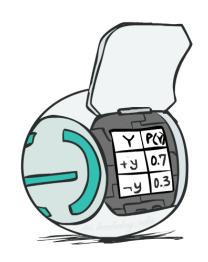
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

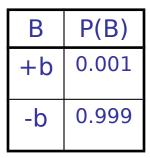
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

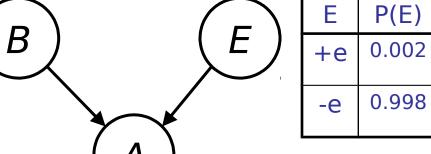
$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



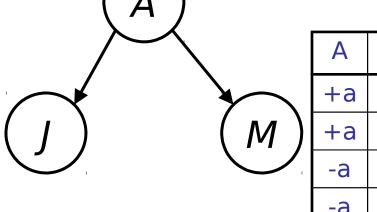


Example: Alarm Network

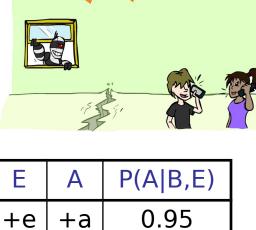




Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95



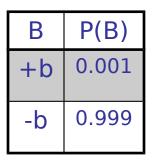
Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99



P	(+b,	-e,	+a,	-j,	+m) =
	('	,	• ,		•	<i>'</i>

В	Ш	4	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network



P(J|A)

0.9

0.1

0.05

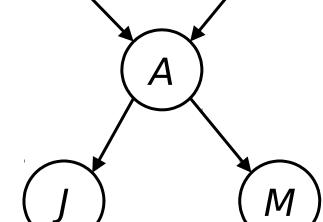
0.95

+a

+a

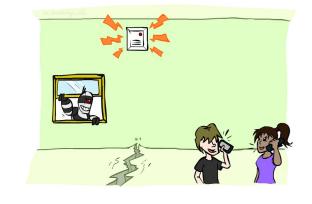
-a

-a



Е	P(E)
+e	0.002
-е	0.998

Α	М	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99



P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	Е	A	P(A B,E)
+b	+e	+a	0.95
+b	e +	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	ę	+a	0.001
-b	-e	-a	0.999

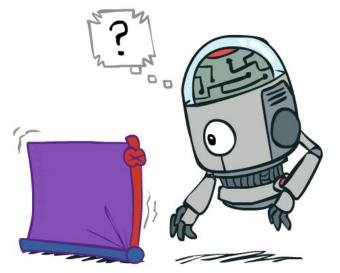
Size of a Bayes' Net

How big is a joint distribution over N Boolean variables?

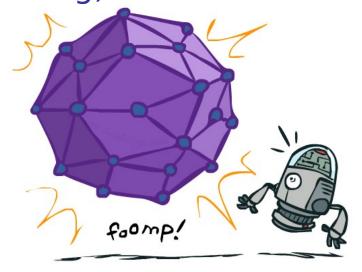
 2^{N}

How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$



- Both give you the power to calculate $P(X_1, X_2, ... X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)



Bayes' Nets

- Representation
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes' Nets from Data

Conditional Independence

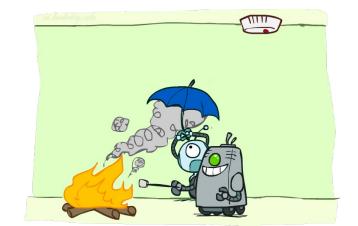
X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) - - - \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

- (Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke$

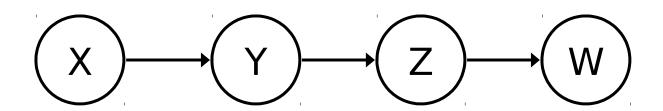


Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule -> Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

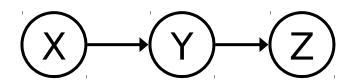


Conditional independence assumptions directly from simplifications in chain rule:

• Additional implied conditional independence assumptions?

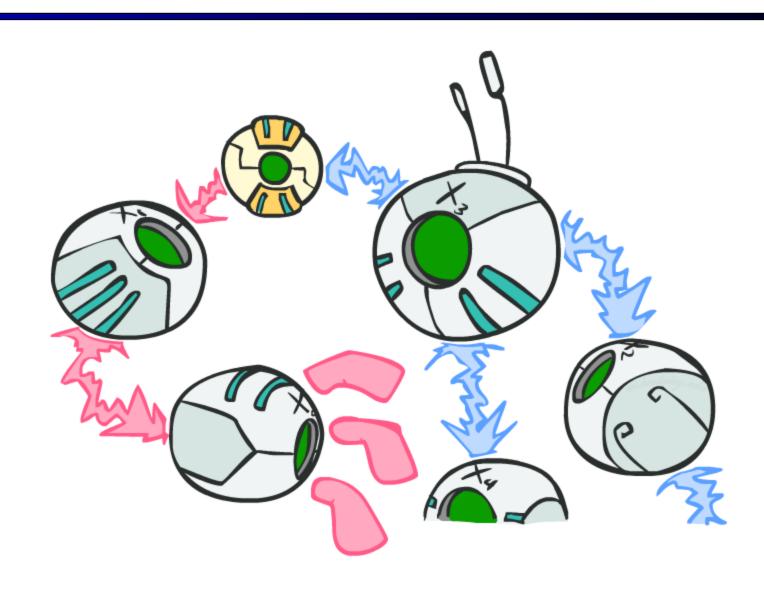
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:



- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline



D-separation: Outline

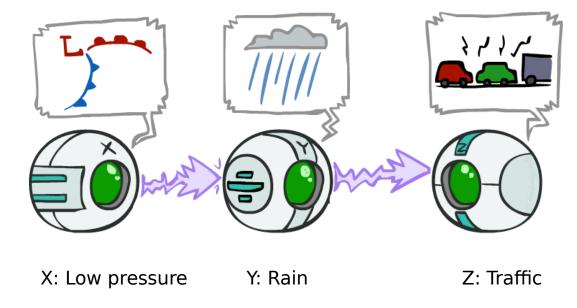
Study independence properties for triples

 Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such queries

Causal Chains

 This configuration is a "causal chain"



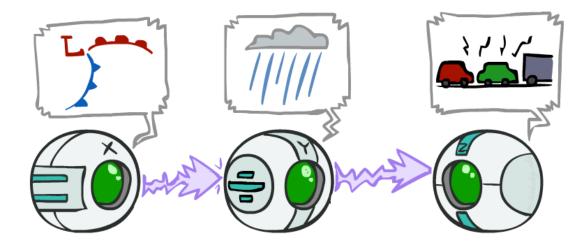
$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1, P(+z | +y) = 1, P(-z | -y) = 1$$

Causal Chains

 This configuration is a "causal chain"



X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

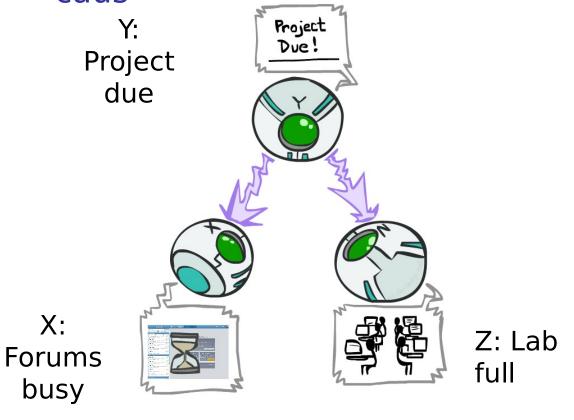
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"



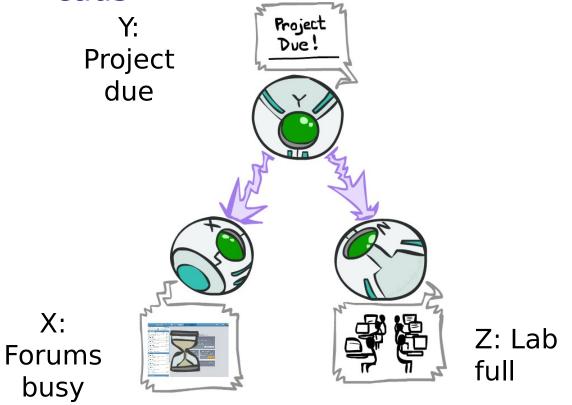
P(x, y, z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1, P(+z | +y) = 1, P(-z | -y) = 1$$

Common Cause

This configuration is a "common cause"



P(x,y,z) = P(y)P(x|y)P(z|y)

• Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

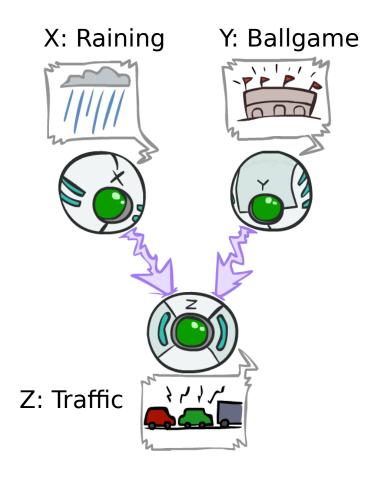
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

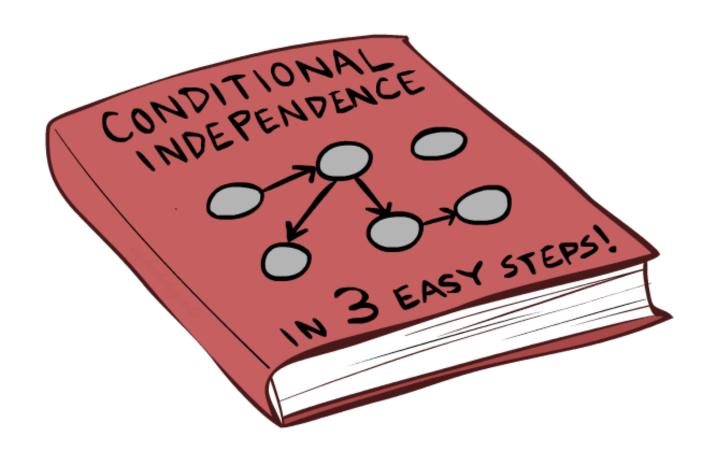
Common Effect

 Last configuration: two causes of one effect (v-structures)



- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case



The General Case

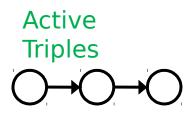
General question: in a given BN, are two variables independent (given evidence)?

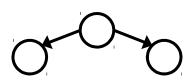
Solution: analyze the graph

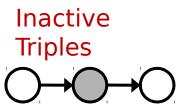
 Any complex example can be broken into repetitions of the three canonical cases

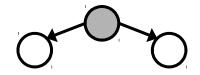
Active / Inactive Paths

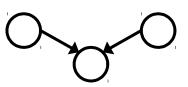
- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!







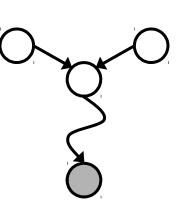




- A path is active if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)

 $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed (

All it takes to block a path is a single inactive segment



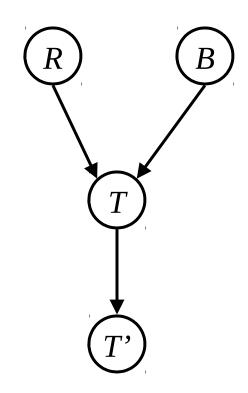
D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- lacktriangle Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed η

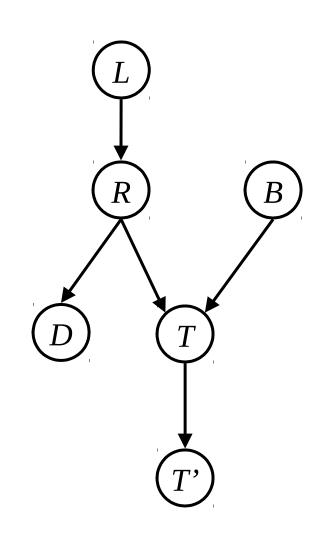
$$X_i \not \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$



$L \! \perp \! \! \perp \! \! T' T$	Yes
$L \! \perp \! \! \! \perp \! \! \! \! \! B$	Yes
$L \! \perp \! \! \perp \! \! B T$	
$L \! \perp \! \! \perp \! \! B T'$	
$L \! \perp \! \! \perp \! \! B T, R$	Yes



Variables:

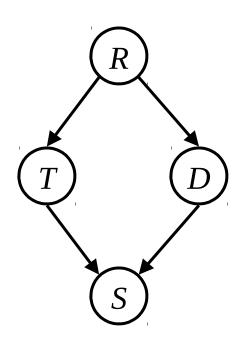
R: Raining

■ T: Traffic

D: Roof drips

S: I'm sad

• Questions:

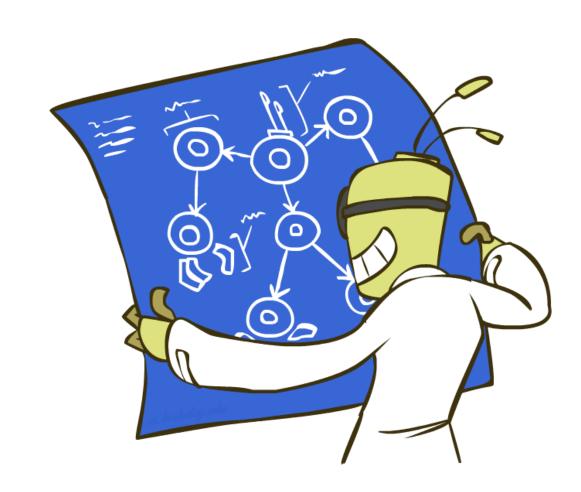


Structure Implications

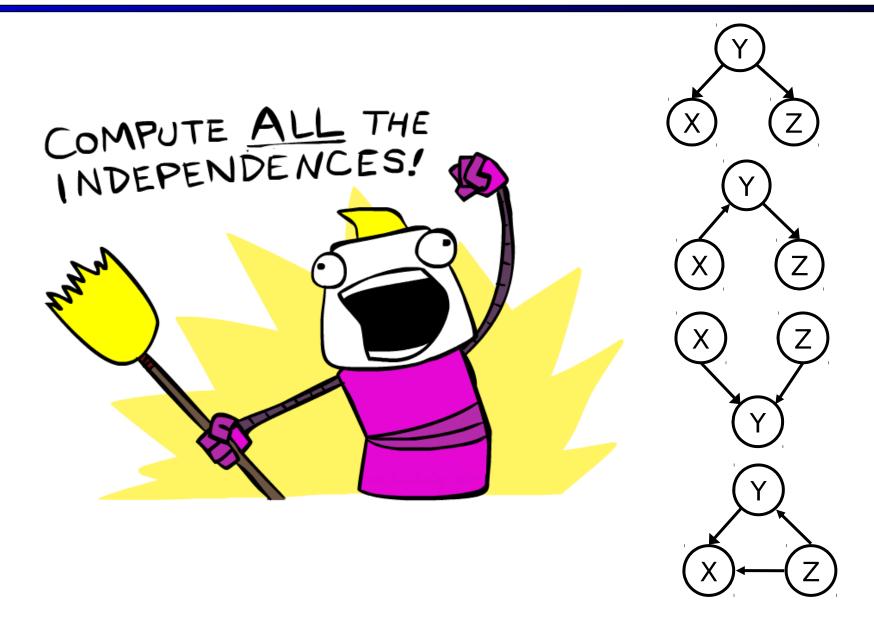
 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

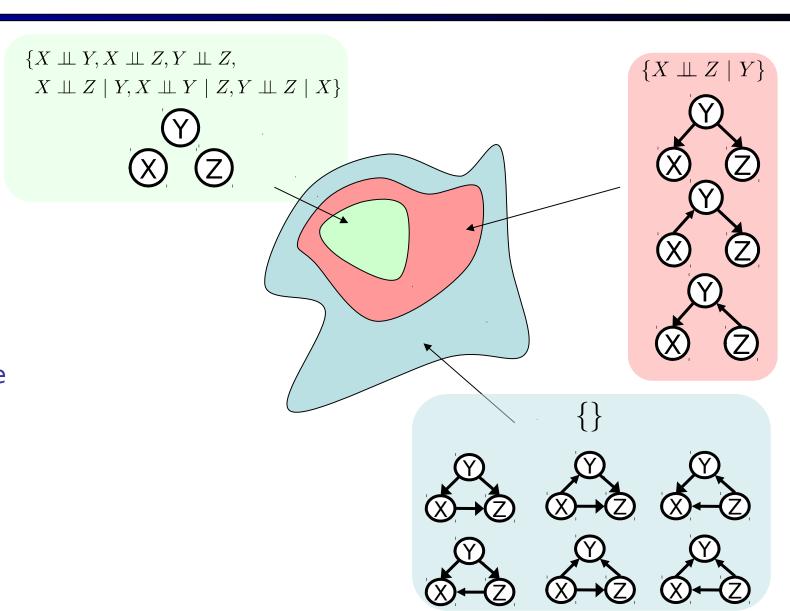


Computing All Independences



Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- **✓** Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data