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Bayes' Nets

" A Bayes’ net is an
efficient encoding
of a probabilistic
model of a domain

" Questions we can ask:
" Inference: given a fixed BN, what is P(X | e)?

" Representation: given a BN graph, what kinds of distributions can it
encode?

" Modeling: what BN is most appropriate for a given domain?



Bayes’ Net Semantics

= A directed, acyclic graph, one node per random
variable

= A conditional probability table (CPT) for each node

" A collection of distributions over X, one for each
combination of parents’ values

P(X|ay...an)
= Bayes’ nets implicitly encode joint distributions

= As a product of local conditional distributions

" To see what ﬁrobability a BN gives to a full assignment,
multiply all the relevant conditionals together:

(1
P(z1,z0,...2n) = || P(z;|parents(X;))
=1




Example: Alarm Network
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Example: Alarm Network
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Size of a Bayes’ Net

* How big is a joint distribution " Both give you the power to calculate
over N Boolean variables? P(X1. Xor .. Xn)
N .
2 " BNs: Huge space savings!
= How big is an N-node net if = Also easier to elicit local CPTs

nodes have up to k parents? ,
= Also faster to answer queries

O(N * 2k+1) (coming)




Bayes' Nets

&’ Representation
" Conditional Independences
" Probabilistic Inference

" Learning Bayes’' Nets from Data



Conditional Independence

= Xand Y are independent if

Vr,y P(z,y) = P(z)P(y) ——--2* X1Y

= X and Y are conditionally independent given Z
Vz,y,z P(z,ylz) = P(z|z)P(y|z) —--+ X 1LY|Z

" (Conditional) independence is a property of a distribution

= Example: Alarm L Fire|Smoke




Bayes Nets: Assumptions

= Assumptions we are required to make to
define the Bayes net when given the graph:

P(xi|xy - xi_1) = P(x;|parents(X;))

" Beyond above “chain rule -> Bayes net”
conditional independence assumptions

= Often additional conditional independences

= They can be read off the graph

" Important for modeling: understand
assumptions made when choosing a Bayes
net graph



Example

OnOnOR0

" Conditional independence assumptions directly from simplifications
in chain rule:

" Additional implied conditional independence assumptions?



Independence in a BN

" |Important question about a BN:
" Are two nodes independent given certain evidence?
" |If yes, can prove using algebra (tedious in general)
" If no, can prove with a counter example

" Example:

" Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which causes
traffic.

= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



D-separation: Outline




D-separation: Outline

" Study independence properties for triples

" Analyze complex cases in terms of member
triples

" D-separation: a condition / algorithm for
answering such queries



Causal Chains

* This configuration is a “causal
chain”

L2

/ i

T

X: Low pressure

R

Al

Y: Rain

P(xz,y,z) = P(z)P(y|lz)P(z|y)

- I(\Slu?ranteed X independent of Z ?
0!

" One example set of CPTs for which X is
not independent of Z is sufficient to
show this independence is not
guaranteed.

" Example:

" Low pressure causes rain causes traffic,

high pressure causes no rain causes no
traffic

" In numbers:



Causal Chains

- 'Cl'rr]\gsirﬁ:’pnﬁguration IS a “causal - SiL\J/aerna%eed X independent of Z
) () el e =t
@W@ _ P(@)P(ylz) P(zly)
= = @ P(2)P(yx)

X: Low pressure Y: Rain = P(z|y)

Z: Traffic

P(xz,y,z) = P(z)P(y|lz)P(z|y)

Yes!

" Evidence along the chain
“blocks” the influence



Common Cause

" This configuration is a “common
cause”

Y: r Praject
Due!

Project
due

X: Z: Lab
Forums full
busy

P(xz,y,z) = P(y)P(z|y) P(z|y)

" Guaranteed X independent of Z ?

No!

" One example set of CPTs for which X is
not independent of Z is sufficient to
show this independence is not
guaranteed.

" Example:

" Project due causes both forums busy
and lab full

" |n numbers:



Common Cause

" This configuration is a “common " Guaranteed X and Z independent

cause” I given Y?
) P(z,y, 2)
Pro'ect P(Z Zl?',y) — v Y
dLJJe ’ P(ﬂ?,y)
_ P(y)P(z|ly)P(zly)
P(y)P(z|y)
= P(z|y)
X:
Forums Yes!
busy . |
P(z,y,2) = P(y)P(z|y) P(z|y) Observing the cause blocks

influence between effects.



Common Effect

" Last configuration: two causes * Are X and Y independent?

of one effect (v-structures) * Yes: the ballgame and the rain cause

. traffic, but they are not correlated
X: Raining Y: Ballgame

E\;' E " Still need to prove they must be (try it!)
ﬁ@&t * Are X and Y independent given Z7?

@ * This is backwards from the other

@~ cases
Z: Traffic = Observing an effect activates influence
between possible causes.

" No: seeing traffic puts the rain and the
ballgame in competition as explanation.




The General Case




The General Case

" General question: in a given BN, are two variables
iIndependent (given evidence)?

" Solution: analyze the graph

= Any complex example can be broken
Into repetitions of the three canonical cases



Active / Inactive Paths

Question: Are X and Y conditionall Active Inactive

. . . ; T | T |
independent given evidence varlagles {z}y? P2 riples

" Yes, if Xand Y “d-separated” by Z O_’O_’O

" Consider all (undirected) paths from Xto Y
* No active paths = independence!

- A path is active if each triple is active:

Causal chain A - B — C where B is unobserved (either
direction)

" Common cause A « B — C where B is unobserved
= Common effect (aka v-structure)

A — B « C where B or one of its descendents is observed

= All it takes to block a path is a single inactive
segment

mi@i}%



D-Separation

" Query: X, | Xj‘{Xkla iy Xk } ?

* Check all (undirected!) paths between X; and X

" |If one or more active, then independence not guaranteed

Xy N X H{ Xk ooes Xig, } @

= Otherwise (i.e. if all paths are inactive), @
Xi 1L X;[{Xn,, 00y X, ) @ @
7

then independence is guaranteed



Example

RI B Yes
R B|T

R B|T'



Example

LAIT|T  Yes
L1 B Yes

L1 B|T
L1 B|T
LI B|T,R Yes



Example

* Variables:
" R: Raining
" T: Traffic
" D: Roof drips
* S: I'm sad
" Questions:




Structure Implications

= Given a Bayes net structure, can run
d-separation algorithm to build a
complete list of conditional
iIndependences that are necessarily
true of the form

X; 1L XiH{ Xkysooes Xi, }

* This list determines the set of
probability distributions that can be
represented




Computing All Independences

MPUTE ALL THE
%l?\DEPEN DENCES!

RS
6%
heh
TS



Topology Limits Distributions

(XY, X1 ZY 1 Z,

(XU Z|Y)
XULZ|Y,XUY|ZY1Z|X)

" Given some graph
topology G, only certain

joint distributions can be ®

encoded ® @

The graph structure
guarantees certain
(conditional)

iIndependences
"= (There might be more
independence)
"= Adding arcs increases the
set of distributions, but N

has several costs

" Full conditioning can
encode any distribution

e
5P &
PP PRSP



Bayes Nets Representation Summary

"= Bayes nets compactly encode joint distributions

" Guaranteed independencies of distributions can be
deduced from BN graph structure

" D-separation gives precise conditional independence
guarantees from graph alone

" A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution



Bayes’ Nefts

& Representation
’IConditionaI Independences

" Probabilistic Inference
" Enumeration (exact, exponential complexity)
" Variable elimination (exact, worst-case
exponential complexity, often better)
" Probabilistic inference is NP-complete
" Sampling (approximate)

" Learning Bayes’ Nets from Data
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