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What is adversarial search?

Adversarial search: planning used to play a game such as chess or checkers

– algorithms are similar to graph search except that we plan under the 
assumption that our opponent will maximize his own advantage...
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Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Outcome of game can be predicted 
from any initial state assuming 

both players play perfectly

Unsolved

Solved

Solved

Unsolved

~10^40 states

~10^20 states

Less than 9!=362k states

?



  

Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Fully observable / partially observable



  

What is a zero-sum game?

Zero-sum:

• Sum of utilities is zero

• In the case of a two player game:

• Pure competition

Not zero-sum:

• Agents have arbitrary utilities

• Might induce cooperation or competition



  

A formal definition of a deterministic game
Problem:

State set: S (start at s0)

Players: P={1...N} (usually take turns)

Action set: A

Transition Function: SxA -> S

Terminal Test: S -> {t,f}

Terminal Utilities: SxP -> R

Solution: 

Policy, S -> A

Objective:

Find an optimal policy

– a policy that maximizes utility assuming that 
adversary acts optimally.
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to the def'n of a standard 

search problem?



  

A formal definition of a deterministic game
Problem:

State set: S (start at s0)

Players: P={1...N} (usually take turns)

Action set: A

Transition Function: SxA -> S

Terminal Test: S -> {t,f}

Terminal Utilities: SxP -> R

Solution: 

Policy, S -> A

Objective:

Find an optimal policy

– a policy that maximizes utility assuming that 
adversary acts optimally.

How do we solve 
this problem?



  

Adversarial search

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)



  

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You



  

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them



  

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them

You



  

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them

Them

You



  

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)
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What is Minimax?
Consider a simple game:

1. you make a move
2. your opponent makes a move
3. game ends
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What is Minimax?

3 812 2 64 14 25

Max
(you)

Min
(them)

Max
(you)

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree 
look like in this case?



  

What is Minimax?

3 812 2 64 14 25

Max
(you)

Min
(them)

Max
(you)

These are terminal utilities
– assume we know what 

these values are
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What is Minimax?
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3 2 2

3Max
(you)

Min
(them)

Max
(you)

This is called 
“backing up” 

the values



  

What is Minimax?

3 812 2 64 14 25

Okay – so we know how to back up values ...

… but, how do we construct the tree?

This tree is already built...
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What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.
– since most games have forward progress, the distinction

between tree search and graph search is less important



  

What is Minimax?



  

Is it always correct to assume your opponent plays optimally?

Minimax properties

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

10 10 9 100

max

min



  

Minimax vs “expectimax”

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Minimax vs “expectimax”

Slide: Berkeley CS188 course notes (downloaded Summer 2015)
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Minimax properties
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Is minimax optimal? Is it complete?

Time complexity = 

Space complexity = 

Is it practical? In chess, b=35, d=100

Minimax properties

is a big number...

So what can we do?



  

Key idea: cut off search at a certain depth and give the 
corresponding nodes an estimated value.

Evaluation functions

? ? ? ?

-1 -2 4 9

4

-2 4

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Cut it off here



  

Key idea: cut off search at a certain depth and give the 
corresponding nodes an estimated value.

Evaluation functions

? ? ? ?

-1 -2 4 9

4

-2 4

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Cut it off here

the evaluation function 
makes this estimate.



  

Evaluation functions

How does the evaluation function make the estimate?
– depends upon domain

For example, in chess, the value of a state 
might equal the sum of piece values.

– a pawn counts for 1
– a rook counts for 5
– a knight counts for 3
...



  

A weighted linear evaluation function

number of pawns on the board

number of knights on the board

A pawn counts for 1

A knight counts for 3



  

At what depth do you run the evaluation function?

? ? ? ?

-1 -2 4 9

4

-2 4 Option 1: cut off search at a fixed depth

Option 2: cut off search at quiescient 
states deeper than a certain threshold

Option 3: ?

The deeper your threshold, the less the 
quality of the evaluation function 
matters...



  

At what depth do you run the evaluation function?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Search depth=2



  

At what depth do you run the evaluation function?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Search depth=10



  

Alpha/Beta pruning

Image: Berkeley CS188 course notes (downloaded Summer 2015)
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Max

Min
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Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3

So, we don't need to expand these nodes 
in order to back up correct values!

That's alpha-beta 
pruning.



  

Alpha/Beta pruning: algorithm idea

 General configuration (MIN version)
 We’re computing the MIN-VALUE at 

some node n
 We’re looping over n’s children
 n’s estimate of the childrens’ min is 

dropping
 Who cares about n’s value?  MAX
 Let a be the best value that MAX can 

get at any choice point along the 
current path from the root

 If n becomes worse than a, MAX will 
avoid it, so we can stop considering n’s 
other children (it’s already bad enough 
that it won’t be played)

 MAX version is symmetric

MAX

MIN

MAX

MIN
a

n

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Alpha/Beta pruning: algorithm

Slide: adapted from Berkeley CS188 course notes (downloaded Summer 2015)

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, 
value(successor, α, β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, 
value(successor, α, β))

if v ≥ β return v
α = max(α, v)

return v

α: best value so far for MAX along 
path to root

β: best value so far for MIN along 
path to root
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Alpha/Beta pruning
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Alpha/Beta pruning

3 812

3 2
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2

Prune because value 
(2) is out of alpha-beta 
range
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Alpha/Beta pruning
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Alpha/Beta pruning
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Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

2(3,5)

14 5 2
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Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = 

Alpha/beta time complexity >= 

– the improvement w/ alpha/beta depends upon move ordering...

3 812 2 64 14 25

3 2 2

3The order in which we expand a node.

How to choose move ordering? Use IDS.
– on each iteration of IDS, use prior run to inform ordering of next node expansions.
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