

Adversarial Search

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

What is adversarial search?

Adversarial search: planning used to play a game such as chess or checkers

– algorithms are similar to graph search except that we plan under the
assumption that our opponent will maximize his own advantage...

Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Solved/unsolved?

Solved/unsolved?

Solved/unsolved?

Solved/unsolved?

Outcome of game can be predicted
from any initial state assuming

both players play perfectly

Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Outcome of game can be predicted
from any initial state assuming

both players play perfectly

Unsolved

Solved

Solved

Unsolved

Examples of adversarial search

Chess

Checkers

Tic-tac-toe

Go

Outcome of game can be predicted
from any initial state assuming

both players play perfectly

Unsolved

Solved

Solved

Unsolved

~10^40 states

~10^20 states

Less than 9!=362k states

?

Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Fully observable / partially observable

What is a zero-sum game?

Zero-sum:

• Sum of utilities is zero

• In the case of a two player game:

• Pure competition

Not zero-sum:

• Agents have arbitrary utilities

• Might induce cooperation or competition

A formal definition of a deterministic game
Problem:

State set: S (start at s0)

Players: P={1...N} (usually take turns)

Action set: A

Transition Function: SxA -> S

Terminal Test: S -> {t,f}

Terminal Utilities: SxP -> R

Solution:

Policy, S -> A

Objective:

Find an optimal policy

– a policy that maximizes utility assuming that
adversary acts optimally.

A formal definition of a deterministic game
Problem:

State set: S (start at s0)

Players: P={1...N} (usually take turns)

Action set: A

Transition Function: SxA -> S

Terminal Test: S -> {t,f}

Terminal Utilities: SxP -> R

Solution:

Policy, S -> A

Objective:

Find an optimal policy

– a policy that maximizes utility assuming that
adversary acts optimally.

How is this similar/different
to the def'n of a standard

search problem?

A formal definition of a deterministic game
Problem:

State set: S (start at s0)

Players: P={1...N} (usually take turns)

Action set: A

Transition Function: SxA -> S

Terminal Test: S -> {t,f}

Terminal Utilities: SxP -> R

Solution:

Policy, S -> A

Objective:

Find an optimal policy

– a policy that maximizes utility assuming that
adversary acts optimally.

How do we solve
this problem?

Adversarial search

Image: Berkeley CS188 course notes (downloaded Summer 2015)

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them

You

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them

Them

You

This is a game tree for tic-tac-toe

Images: AIMA, Berkeley CS188 course notes (downloaded Summer 2015)

You

Them

Them

You

Utility

What is Minimax?
Consider a simple game:

1. you make a move
2. your opponent makes a move
3. game ends

What is Minimax?
Consider a simple game:

1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree
look like in this case?

What is Minimax?

3 812 2 64 14 25

Max
(you)

Min
(them)

Max
(you)

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree
look like in this case?

What is Minimax?

3 812 2 64 14 25

Max
(you)

Min
(them)

Max
(you)

These are terminal utilities
– assume we know what

these values are

What is Minimax?

3 812 2 64 14 25

3 2 2

Max
(you)

Min
(them)

Max
(you)

What is Minimax?

3 812 2 64 14 25

3 2 2

3Max
(you)

Min
(them)

Max
(you)

Max
(you)

Min
(them)

What is Minimax?

3 812 2 64 14 25

3 2 2

3Max
(you)

Min
(them)

Max
(you)

This is called
“backing up”

the values

What is Minimax?

3 812 2 64 14 25

Okay – so we know how to back up values ...

… but, how do we construct the tree?

This tree is already built...

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 12

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812

3

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812

3

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812 2 64

3 2

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.

3 812 2 64 14 25

3 2 2

3

What is Minimax?

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.
– since most games have forward progress, the distinction

between tree search and graph search is less important

What is Minimax?

Is it always correct to assume your opponent plays optimally?

Minimax properties

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

10 10 9 100

max

min

Minimax vs “expectimax”

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Minimax vs “expectimax”

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Is minimax optimal? Is it complete?

Minimax properties

Is minimax optimal? Is it complete?

Time complexity = ?

Space complexity = ?

Minimax properties

Is minimax optimal? Is it complete?

Time complexity =

Space complexity =

Minimax properties

Is minimax optimal? Is it complete?

Time complexity =

Space complexity =

Is it practical? In chess, b=35, d=100

Minimax properties

Is minimax optimal? Is it complete?

Time complexity =

Space complexity =

Is it practical? In chess, b=35, d=100

Minimax properties

is a big number...

Is minimax optimal? Is it complete?

Time complexity =

Space complexity =

Is it practical? In chess, b=35, d=100

Minimax properties

is a big number...

So what can we do?

Key idea: cut off search at a certain depth and give the
corresponding nodes an estimated value.

Evaluation functions

? ? ? ?

-1 -2 4 9

4

-2 4

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Cut it off here

Key idea: cut off search at a certain depth and give the
corresponding nodes an estimated value.

Evaluation functions

? ? ? ?

-1 -2 4 9

4

-2 4

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Cut it off here

the evaluation function
makes this estimate.

Evaluation functions

How does the evaluation function make the estimate?
– depends upon domain

For example, in chess, the value of a state
might equal the sum of piece values.

– a pawn counts for 1
– a rook counts for 5
– a knight counts for 3
...

A weighted linear evaluation function

number of pawns on the board

number of knights on the board

A pawn counts for 1

A knight counts for 3

At what depth do you run the evaluation function?

? ? ? ?

-1 -2 4 9

4

-2 4 Option 1: cut off search at a fixed depth

Option 2: cut off search at quiescient
states deeper than a certain threshold

Option 3: ?

The deeper your threshold, the less the
quality of the evaluation function
matters...

At what depth do you run the evaluation function?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Search depth=2

At what depth do you run the evaluation function?

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Search depth=10

Alpha/Beta pruning

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Alpha/Beta pruning

3 812

3

Alpha/Beta pruning

3 812

3

Alpha/Beta pruning

3 812 2

3

Alpha/Beta pruning

3 812 2 4

3

Alpha/Beta pruning

3 812 2 4

3
We don't need to expand this node!

Alpha/Beta pruning

3 812 2 4

3
We don't need to expand this node!

Why?

Alpha/Beta pruning

3 812 2 4

3
We don't need to expand this node!

Why?

Max

Min

Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3

Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3

So, we don't need to expand these nodes
in order to back up correct values!

Alpha/Beta pruning

Max

Min

3 812 2 14 25

3 2 2

3

So, we don't need to expand these nodes
in order to back up correct values!

That's alpha-beta
pruning.

Alpha/Beta pruning: algorithm idea

 General configuration (MIN version)
 We’re computing the MIN-VALUE at

some node n
 We’re looping over n’s children
 n’s estimate of the childrens’ min is

dropping
 Who cares about n’s value? MAX
 Let a be the best value that MAX can

get at any choice point along the
current path from the root

 If n becomes worse than a, MAX will
avoid it, so we can stop considering n’s
other children (it’s already bad enough
that it won’t be played)

 MAX version is symmetric

MAX

MIN

MAX

MIN
a

n

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Alpha/Beta pruning: algorithm

Slide: adapted from Berkeley CS188 course notes (downloaded Summer 2015)

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v,
value(successor, α, β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v,
value(successor, α, β))

if v ≥ β return v
α = max(α, v)

return v

α: best value so far for MAX along
path to root

β: best value so far for MIN along
path to root

Alpha/Beta pruning

(-inf,+inf)

Alpha/Beta pruning

(-inf,+inf)

(-inf,+inf)

Alpha/Beta pruning

3

3

(-inf,+inf)

(-inf,3)

Best value for far for
MIN along path to root

Alpha/Beta pruning

3 12

3

(-inf,+inf)

(-inf,3)

Best value for far for
MIN along path to root

Alpha/Beta pruning

3 812

3

(-inf,+inf)

(-inf,3)

Best value for far for
MIN along path to root

Alpha/Beta pruning

3 812

3

(3,+inf)

(-inf,3)

Best value for far for
MAX along path to root

Alpha/Beta pruning

3 812

3

(3,+inf)

(-inf,3) (3,+inf)

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

Prune because value
(2) is out of alpha-beta
range

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

(3,+inf)

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

14(3,14)

14

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

5(3,5)

14 5

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

2(3,5)

14 5 2

Alpha/Beta properties

Is it complete?

Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity =

Alpha/beta time complexity >=

– the improvement w/ alpha/beta depends upon move ordering...

Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity =

Alpha/beta time complexity >=

– the improvement w/ alpha/beta depends upon move ordering...

3 812 2 64 14 25

3 2 2

3The order in which we expand a node.

Alpha/Beta properties

Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity =

Alpha/beta time complexity >=

– the improvement w/ alpha/beta depends upon move ordering...

3 812 2 64 14 25

3 2 2

3The order in which we expand a node.

How to choose move ordering? Use IDS.
– on each iteration of IDS, use prior run to inform ordering of next node expansions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

