Variable Elimination

1 Variable Elimination

For the Bayes net below, we are given the query $P(Z \mid+y)$. All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: U, V, W, T, X.

Complete the following description of the factors generated in this process: After inserting evidence, we have the following factors to start out with:

$$
P(U), P(V), P(W \mid U, V), P(X \mid V), P(T \mid V), P(+y \mid W, X), P(Z \mid T)
$$

When eliminating U we generate a new factor f_{1} as follows:

$$
\begin{equation*}
f_{1}(V, W)=\sum_{u} P(u) P(W \mid u, V) \tag{1}
\end{equation*}
$$

This leaves us with the factors:

$$
P(V), P(X \mid V), P(T \mid V), P(+y \mid W, X), P(Z \mid T), f_{1}(V, W)
$$

1. When eliminating V we generate a new factor f_{2} as follows:
2. This leaves us with the factors:
3. When eliminating W we generate a new factor f_{3} as follows:
4. This leaves us with the factors:
5. When eliminating T we generate a new factor f_{4} as follows:
6. This leaves us with the factors:
7. When eliminating X we generate a new factor f_{5} as follows:
8. This leaves us with the factors:
9. Briefly explain how $P(Z \mid+y)$ can be computed from f_{5}.
10. Among $f_{1}, f_{2}, \cdots, f_{5}$ which is the largest factor generated? (Assume all variables have binary domains.) How large is this factor?
11. Find a variable elimination ordering for the same query, i.e., for $P(Z \mid y)$, for which the maximum size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution should have only 2 variables, for a size of $2^{2}=4$ table. Fill in the variable elimination ordering and the factors generated into the table below

Note: in the naive ordering we used earlier, the first line in this table would have had the following two entries: $\mathrm{U}, f_{1}(V, W)$.

Variable Eliminated	Factor Generated

