CS 4100/5100: Foundations of Artificial Intelligence (Fall 2015)	Robert Platt	
Student(s):	Oct. 1, 2015	
Adversarial Search		

In this problem set, upward triangles represent Maximizers, downward triangles represent Minimizers, circles represent Expect nodes and squares represent terminal states.

1 Minimax

Figure 1: Minimax

- 1. For the Minimax tree above, what is the value of A,B,C,D?
 - A:
 - B:
 - \mathbf{C} :

D:

2 Expectimax

1. For the Expectimax tree above, what is the value of A,B,C,D,E,F,G?

- A:
- B:
- C:
- D:
- E:
- F:
- G:

3 Pacman

- 1. In pacman game (pacman, ghost, food, power pellets), what are the maximizers and minimizers?
- 2. How would you evaluate a intermediate state?
- 3. What if ghosts don't play optimal, will the minimax strategy always be the optimal strategy? Why?
- 4. If the ghosts play random and the pacman KNOWS that, can you find a strategy for pacman better than the minimax? If yes, please give the strategy and an example game tree, otherwise please state why.
- 5. If the ghosts play random but the pacman DOESN'T KNOW that and plays optimal, will the minimax strategy GUARANTEE a better outcome for pacman than the outcome when the ghosts play optimal? why?

4 Alpha-Beta Pruning

Figure 3: Alpha-Beta Pruning

1. Please fill in the state's utility values for the game tree above using alpha-beta pruning, cross the pruned edges and write down the Alpha Beta value from the parent state to the child state. You don't need to write Alpah-Beta values for the edges that have been pruned and the utility values for the pruned states.

	Alpha	Beta
1	$-\infty$	$+\infty$
2		
3		
4		
5		
6		
7		
8		
9		
10		

	Alpha	Beta
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		