Alpha-Beta Pruning - Probability

1 Alpha-Beta Pruning

Figure 1: Alpha-Beta Pruning

1. Please fill in the state's utility values for the game tree above using alpha-beta pruning, cross the pruned edges and write down the Alpha Beta value from the parent state to the child state. You don't need to write Alpah-Beta values for the edges that have been pruned and the utility values for the pruned states.

	Alpha	Beta
1	$-\infty$	$+\infty$
2		
3		
4		
5		
6		
7		
8		
9		
10		

	Alpha	Beta
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		

2 Probability

Find the value of $P(X \mid Y=-y)$ using normalization.

X	Y	P
+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

3 Bayes' rule

Suppose a woman in her 40 s, decides to have a medical test for breast cancer called a mammogram. If the test is positive, what is the probability that she has cancer? That obviously depends on how reliable the test is. Suppose she is told that the test has a sensitivity of 80%, which means, if she has cancer, the test will be positive with probability 0.8. In other words,
$p(x=1 \mid y=1)=0.8$
Where $x=1$ is the event the mammogram is positive, and $y=1$ is the event she has breast cancer. Many people conclude that she is 80% likely to has cancer, but this is false! They fall for the base rate fallacy. Show why they are wrong, and calculate the actual chance that she has cancer ${ }^{1}$. You may need these: $p(y=1)=0.004$ and $p(x=1 \mid y=0)=0.1$.

[^0]
[^0]: ${ }^{1}$ Based on this analysis, the US government decided not to recommend annual mammogram screening to women in their 40 s because the number of false alarms would cause needless worry and stress among women, and result in unnecessary, expensive, and potentially harmful tests.

