Solution for Homework 3

1 Problems

1. Problem 1.

Answer:
a) $K(x, z)=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right) \cdot\left(z_{1}^{2}, z_{1} z_{2}, z_{2}^{2}\right)^{T}=x_{1}^{2} z_{1}^{2}+x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2}$
b) $F(x)=\left(x, x_{1} x_{2}\right)$
2. Problem 2.

Answer:

a)
$P_{C \mid D}=$ normalize $P_{C D}$
$P_{C D}=\sum_{A, B} P_{A B C D}$
$P_{A B C D}=P_{A} P_{B \mid A} P_{C \mid B} P_{D \mid B}$
$P_{C \mid D}=$ normalize $_{C} \sum_{A, B} P_{A} P_{B \mid A} P_{C \mid B} P_{D \mid B}$
b)

A, B will be eliminated.
2 ways. first A then B , or in reverse order.
A, B:
size of the largest factor $2^{3}=8$, since 3 free binary variables BCD in $P_{B C D}$ before SUM $\sum_{B}\left[\left(\sum_{A} P_{A} P_{B \mid A}\right) P_{C \mid B} P_{D \mid B}\right]=\sum_{B} P_{B} P_{C \mid B} P_{D \mid B}=\sum_{B} P_{B C D}=P_{C D}$
B, A:
size of the largest factor $2^{4}=16$, since 4 free binary variables ABCD in $P_{B C D \mid A}$ before SUM
$\sum_{P_{C D}}\left[P_{A}\left(\sum_{B} P_{B \mid A} P_{C \mid B} P_{D \mid B}\right)\right]=\sum_{A} P_{A} \sum_{B} P_{B C D \mid A}=\sum_{A} P_{A} P_{C D \mid A}=\sum_{A} P_{A C D}=$

3. Problem 3.

Answer:

a)
$\operatorname{sign}((2,0,1,1) \cdot(1,1,0,-1))=\operatorname{sign}(1)=+1$
$\operatorname{sign}((-1,0,1,1) \cdot(1,1,0,-1))=\operatorname{sign}(-2)=-1$
b)
$W_{\text {new }}=W_{\text {old }}+\alpha($ desired_output - prediction $) \cdot$ input_vector
So new weight vector will be $(1,1,0,-1)+0.1 *(-1-1) *(0,0,0,-1)=(1,1,0,-0.8)$

4. Problem 4.

Answer:

1. From the problem we know that all training examples are the same, the only difference it the label. When we do the training, our object is to minimize the loss function which in this case is the squared error or error rate function. logistic regression Predictor is deterministic, that is, given an input sample, the prediction is deterministic not by random guess. In another word, the final prediction will always be either 0 or 1 for all training examples, since they are the same. Predicting the training example as 1 will minimize the squared error, since the error rate in this case is $20 / 100$ while predicting it as 0 , the error rate is $80 / 100$.

5. Problem 5.

 Answer:a)
\#Occurrences of $\mathrm{Y}=0: 5$
\#Occurrences of $F_{1}=1$ when $\mathrm{Y}=0: 3$
So $P\left(F_{1}=1 \mid Y=0\right)=\frac{3}{5}$
b)

Adding 1 occurrence for $F_{1}=1$ when $\mathrm{Y}=0$, and 1 occurrence for $F_{1}=0$ when $\mathrm{Y}=0$ \#Occurrences of $Y=0: 5+2$
\#Occurrences of $F_{1}=1$ when $\mathrm{Y}=0: 3+1$
So $P\left(F_{1}=1 \mid Y=0\right)=\frac{4}{7}$

