CS 4100/5100 – Quiz 3 9/26/2013

- When we determine the minimax value of a MAX node, we should select the _____ minimax value from its successors. Note: High values are assumed to be good for player "MAX"
 - A. Minimal B. Maximal
- 2. Recursive minimax search is _____

 A. Depth-first
 B. Breadth-first
 C. None of above
- 3. The effectiveness of alpha-beta pruning is _____ on the order in which the states are examined.
 - A. Dependent B. Independent
- 4. If a search tree has depth d and its branching factor is k, then minimax algorithm will examine _____ game states.
 - A. $O(k \cdot d)$
 - B. $O(d^k)$
 - C. $O(k \cdot \log(d))$
 - D. $O(k^d)$
- 5. What is utility function in an adversarial game? _____
 - A. It's a timecost function. It defines the time cost from root to a certain node.
 - B. It's a function that maps every node to a number using hash tables.
 - C. It's a probability function. It indicates the probability of winning a game.
 - D. It's an objective function that defines the final numeric value for a game.
- 6. Minimax algorithm may explore all of the states in a game, which is not practical. How many of these can be used to make a search algorithm more effective?
 - I. Apply a heuristic evaluation function to states in the search
 - II. Apply iterative deepening in the search
 - III. Do forward pruning
 - A. 0 B. 1 C. 2 D. 3
- 7. Can we extend the minimax algorithm in zero-sum games that involve more than two players?