
Student Name:

CS 2500 Exam 2—Fall 2016
Your Beloved CS 2500 Instructors

You are attending the lecture of

• The exam is a one-hour exam. To accommodate everyone’s needs for
time and space, the instructors will stay for three hours.

• Write down the answers in the space provided.

• You may use the usual primitives and expression forms, including
those suggested in hints; for everything else, define it.

• The phrase “design a function” means that you should apply the de-
sign recipe.

You do not have to spell out examples as test cases (with check-
expect and friends), but you are welcome to do so.

When a problem asks for a complete function, you are not required
to provide a template. But, if you exlect to skip the template step, be
prepared to struggle with the development of the function.

• Some basic test taking advice: Before you start answering any prob-
lems, read every problem, so your brain can be thinking about the
harder problems in background while you knock off the easy ones.

Problem Max. Points
1 / 10
2 / 16
3 / 6
4 / 14
Total / 46



Student Name:

2



Problem 1 Design the function remove-both. It consumes a Don’t judge your
colleague too badly.
He went to a highly
prestigious university
that does not consider
it necessary to train
its CS majors as
software developers.

string n and a PB, the data representation of phone books de-
signed by your current partner. The result is also a PB but with
all occurrences of n and the following phone number removed.

; A PB is one of:
; -- '()
; -- (cons String (cons Number PB))
; interpretation A phone book such as
; (cons "Alan" (cons 617738.1212 pb))
; means "Alan"'s phone number is 617738.1212,
; and the rest of the phone book is pb

3



4



Problem 2 Design the function drop. It consumes and produces
a list of Posns. Each Posn whose y coordinate is larger than 200
is removed. All other y coordinates are increased by 3.

(a) Develop the signature for drop, its purpose statement, and
examples. You may assume the standard definition of Posn.

5



6



(b) Use the existing abstractions (2e: figures 91 and 92; 1e: figure
57, p. 313; reproduced as figures 1 and 2 at the end of the exam)
to complete the design of drop.

7



8



(c) Complete the design of the function without the use of exist-
ing abstractions (“loops”).

9



10



Problem 3 Design count-wings. The function consumes a
Butterfly and counts the pairs of wings that surround its body.

Not every left-wing,
right-wing animal is
about politics.You may assume the standard definition of N (natural num-

bers).

(define LEFT-WING "(")
(define RIGHT-WING ")")

; A Butterfly is one of:
; -- "body"
; -- (list LEFT-WING Butterfly RIGHT-WING)

11



12



Problem 4 Design the function cleanse, which consumes an Cleansing is not
censoring, though it is
often performed on
behalf of a censor.

Enumeration and removes all bad strings. To simplify the prob-
lem, we assume that there is only one bad string: "@#$%".

(define-struct bullets (loi))
(define-struct points (loi))
(define-struct item (low))

; An Enumeration is one of:
; -- (make-bullets LoI) ;; bulletized items
; -- (make-points LoI) ;; numbered points
;
; An LoI is a [List-of Item]
;
; An Item is a structure: (make-item LoW)
;
; An LoW is a [List-of Word]
;
; A Word is one of:
; -- String
; -- Enumeration
;
; interpretation An Enumeration is a generic data
; representation of HTML, LateX, etc nested,
; itemized lists.

13



14



(space for problem 4)

15



16



; [X] N [N -> X] -> [List-of X]
; constructs a list by applying f to 0, 1, ..., (sub1 n)

; (build-list n f) == (list (f 0) ... (f (- n 1)))

(define (build-list n f) ...)

; [X] [X -> Boolean] [List-of X] -> [List-of X]
; produces a list from those items on lx for which p holds
(define (filter p lx) ...)

; [X] [List-of X] [X X -> Boolean] -> [List-of X]
; produces a version of lx that is sorted according to cmp
(define (sort lx cmp) ...)

; [X Y] [X -> Y] [List-of X] -> [List-of Y]
; constructs a list by applying f to each item on lx

; (map f (list x-1 ... x-n)) == (list (f x-1) ... (f x-n))

(define (map f lx) ...)

; [X] [X -> Boolean] [List-of X] -> Boolean
; determines whether p holds for every item on lx

; (andmap p (list x-1 ... x-n)) == (and (p x-1) ... (p x-n))

(define (andmap p lx) ...)

; [X] [X -> Boolean] [List-of X] -> Boolean
; determines whether p holds for at least one item on lx

; (ormap p (list x-1 ... x-n)) == (or (p x-1) ... (p x-n))

(define (ormap p lx) ...)

Figure 1: ISL's abstract functions for list-processing (1)

17



; [X Y] [X Y -> Y] Y [List-of X] -> Y
; applies f from right to left to each item in lx and b

; (foldr f b (list x-1 ... x-n)) == (f x-1 ... (f x-n b))

(define (foldr f b lx) ...)

(foldr + 0 '(1 2 3 4 5))
== (+ 1 (+ 2 (+ 3 (+ 4 (+ 5 0)))))

== (+ 1 (+ 2 (+ 3 (+ 4 5))))

== (+ 1 (+ 2 (+ 3 9)))

== (+ 1 (+ 2 12))
== (+ 1 14)

; [X Y] [X Y -> Y] Y [List-of X] -> Y
; applies f from left to right to each item in lx and b

; (foldl f b (list x-1 ... x-n)) == (f x-n ... (f x-1 b))

(define (foldl f b lx) ...)

(foldl + 0 '(1 2 3 4 5))
== (+ 5 (+ 4 (+ 3 (+ 2 (+ 1 0)))))

== (+ 5 (+ 4 (+ 3 (+ 2 1))))

== (+ 5 (+ 4 (+ 3 3)))

== (+ 5 (+ 4 6))

== (+ 5 10)

Figure 2: ISL's abstract functions for list-processing (2)

18


