CS 2500 Exam 2 HONORS SUPPLEMENT - Fall 2013

Your Name:

Instructor:

e This supplement to Exam 2 is in-
tended for students enrolled in the
Honors section of 2500.

e See the instructions on the regular Problem | Points Jout of
exam, but keep in mind that specific 1 8
instructions on any given problem 2 18
override the general instructions on 3 14
the regular exam. Also, you may Total 40

use lambda or 1ocal as needed.

Good luck!

Problem 1 Design the function concat, which consumes a list of lists and ap-
pends them all to produce a single list. Give concat its most general signature
and define it using a loop function. You may not use append or apply.

Problem 2 A sequence represents a series of values. Sequences may be finite or
infinite. In this problem, we’ll work with infinite sequences.
Here are three examples of infinite sequences:

index o | 1 | 2 | 3 |
positive integers 1 2 3 4

even natural numbers 0 2 4 6

lists of 7 a " () " (a) "(a a) |"(a a a)

Here is a data definition for representing infinite sequences:

;75 A [Sequence X] is a [Natural -> X]

;; interpretation: when the function is applied to an
;; 1index (a Natural), it gives back the element at

;; that index.

Here is an example of a [Sequence Natural], the even natural numbers:
(define even—-nats (lambda (i) (*x 2 1i)))

Here is a convenient function for producing a list with the first n elements of
an infinite sequence:

;7 seg—>listn : [Sequence X] Natural -> [List X]
;; Build a list with the first n elements of the
;; sequence s
(define (seg—->listn s n)

(map s (build-list n (lambda (x) x))))

For example,

> (seg—->listn even-nats 10)
(list 0 2 4 6 8 10 12 14 16 18)

You may use even—-nats and seq->1istn for tests, but they should not
be used otherwise.

(a) (8 pts) Design the following functions:

e seg—head, which consumes a sequence s and returns its Oth element.

e seg-rest, which consumes a sequence s and returns a sequence with
all but the Oth element of s.

(b) (10 pts) A series for a sequence s gives the sums of the elements in s. More
precisely, adding the Oth through ith elements of an infinite sequence s forms
the 7th element of another infinite sequence, called a series.

For example, the series for the sequence of positive integers 1, 2, 3, 4, ...
is: 1,3,6,10,

Design the function seq—>series, which consumes a [Sequence X],
and a function for adding Xs (with signature [X X -> X]), and produces a
series for the given sequence.

Problem 3 Consider the following data definition for finite sequences:

;75 A [Maybe X] is one of:
;7 — "undef
ii — X

;5 A [FiniteSeqg X] is a [Sequence [Maybe X]]

;; Constraint: there exists some index i>0 such that
H - no elements at indices [0,1) equal ’"undef

H - all elements at indices >= i equal ’'undef

Informally, the above data definition allows us to represent a finite sequence 1, 2,
3 as the infinite sequence 1, 2, 3, ' undef, ' undef, ' undef, . ..

(a) (2pts)Define even—-nats-4to8,aninstanceof [FiniteSeq Natural]
that represents the sequence of even natural numbers in the range [4,8]—that
is, the finite sequence 4, 6, 8.

(b) (12 pts) Design the function £s—1ength, which consumes a finite sequence
and two natural numbers 1o and hi and produces the length of the finite
sequence. Assume that 1o < hi and that there exists an index 1 in the range
[1lo, hi) such that the element at index 1+1 is ' undef but the element at
index 1 is not.

For example, for the finite sequence even—-nats-4to8 that you defined in
part (a):

> (fs—length even-nats-4to8 0 100)
3

To get credit for this problem, you will need to use an efficient generative
recursion design.

