CSU2500 Exam 2 HONORS SUPPLEMENT - Fall 2011

Name:

Student Id (last 4 digits):

e This supplement to Exam 2 is in-

tended for students enrolled in the Problem | Points /out of
Honors section of 2500. 1 6

2 6

e See the instructions on the regular 3 10
exam. 7 B
Total 34

Good luck!

Problem 1 Design the function concat that consumes a list of lists and appends
each list to produce a single list.
For example:

> (concat (list (list 1 2) (list 3) (list 4 5)))
(list 1 2 3 4 5)

Give concat its most general contract and its definition in terms of a loop func-
tion.

A sequence represents a series of values. For example, 1, 2, 3 is a sequence.
The even natural numbers up to 16 are a sequence: 0, 2, 4, ..., 16. The strings
"A", "B", "C" are a sequence. One thing you can do with sequences is get the
1th element of the sequence (and we always start counting from 0). So the Oth
element of "A"™, "B", "C" is "A", the 1st even natural number is 2, and so on.

Here is a data definition for representing finite sequences:

;7 A [Sequence X] is a
;; (make-seqg Natural [Natural —-> X]).
(define-struct seqg (length i->elem))

Notice that this data definition uses a function to represent the sequence of ele-
ments. When the function is applied to an index, it gives back the element at that
index.

Here is an example of a [Sequence Natural]: the even natural numbers
up to (and incuding) 16:

(make-seq 9 (A (x) (x 2 x)))
Here’s a convenient function for determining if a sequence is empty:

;5 seg—empty? : [Sequence X] —> Boolean
;7 Is the sequence empty?
(define (seg—empty? s)

(zero? (seg-length s)))

And here are another couple of convenient functions for turning a list of elements
into a sequence and vice versa:

;7 list->seqg : [Listof X] —-> [Sequence X]
;5 Turn a list into a sequence
(define (list->seqg 1s)
(make—-seq (length 1s)
(A (1) (list-ref 1ls 1))))

;5 seg—>list : [Sequence X] -> [Listof X]
;5 Turn a sequence into a list
(define (seg—->1list seq)
(build-1list (seg-length seq) (seg-i->elem seq)))

You may use 1ist->seqand seg—->1ist for tests, but they should not be used
otherwise.

Problem 2 Using the Sequence data definition, design the seg—ref function:

;7 seg-ref : [Sequence X] Natural -> X
;7 Get element of sequence at given index.
;7 Assume: given index is < the sequence length.

Problem 3 Design the seg-1eft and seg-right functions, which are useful
for splitting sequences at a given index:

;7 seg—left : [Sequence X] Natural —-> [Sequence X]
;7 Sequence of elements [0,1) of given sequence.

;7 Assume: given index i is <= the sequence length.
(define (seg-left seq i) ...)

;7 seg-right : [Sequence X] Natural -> [Sequence X]
;7 Sequence of elements [i,length) of given sequence.
;; Assume: given index i is <= the sequence length.
(define (seg-right seq i) ...)

Some examples:

(define one-to-five (make-seq 5 addl)) ; 1,2,3,4,5

(seg-left one-to-five 0) ; empty sequence
(seg-left one-to-five 5) ; 1,2,3,4,5

(seg-right one-to-five 0) ; 1,2,3,4,5

(seg-right one-to-five 5) ; empty sequence
(seg-left one-to-five 3) ; 1,2,3
(segq-right one-to-five 3) ; 4,5

[Here is some more space for the previous problem.]

Problem 4 Sorted sequences are very useful, particularly if you want to quickly
find out if some value is in a given sequence. For example, given a sorted list

of student names, it’s easy to find out if "Flunker, Freddy" is in the class,

even if there are lots and lots of students.

Here is an example of a sequence that is sorted according to st ring<?:

;; [Sequence String]
(define roster
(make-seq 4

(A (1)
(cond [(= 1 0) "Ahmed, Amal"]
[(= 1 1) "Flunker, Freddy"]
[(= 1 2) "Shivers, 0lin"]
[(= 1 3) "Van Horn, David"]))))

Design the function contains? which consumes a sorted sequence of strings,
and produces true if the sequence contains the string and false otherwise.

;; contains? : [Sequence String] String -> Boolean
;; Does the sequence contain the given string?

You will get partial credit for a correct, but inefficient solution that uses a
structural recursion design. For full credit, you will need to use an efficient gener-
ative recursion design. [Hint: the idea behind the generative recursion design will
take advantage of the fact that the sequence is sorted.]

[Here is some more space for the previous problem.]

[Here is some more space for the previous problem.]

