
CSU2500 Exam 2 HONORS SUPPLEMENT – Fall 2010

Name:

Student Id (last 4 digits):

• This supplement to Exam 2 is in-
tended for students enrolled in the
Honors section of 2500.

• See the instructions on the regular
exam.

Good luck!

Problem Points /out of
1 / 16
2 / 13
3 / 8

Total / 37



16 POINTSProblem 1 The word “parity” is sometimes used to refer to how many ones are
in a number when it is represented in base 2. For example, the numbers 3 and 5,
which when written in base 2 are 11 and 101, both have even parity, while the
numbers 2 and 7, written in base 2 as 10 and 111, both have odd parity.

We can generalize the notion of parity to arbitrary lists and predicates. Design
the function, parity, that accepts a predicate and a [Listof X] and deter-
mines if list’s parity is even or odd with respect to the predicate. When a list has
an odd parity, the function should produce true, and when it has an even parity,
it should produce false.

For example:

(define (one? n) (= n 1))

(check-expect (parity one? ’(1 1)) false)
(check-expect (parity one? ’(1 0)) true)
(check-expect (parity one? ’(1 1 1)) true)
(check-expect (parity symbol? ’(i b 4 e)) true)

Your Tasks:

A) Design parity using only structural recursion (i.e., no loop function).

B) Write parity using a single call to foldr.

2



[Here is some more space for the previous problem.]

3



13 POINTSProblem 2 All semester students have been asking us to use objects, so we’ve
decided to show you some on the exam. How would we represent objects in a
functional language like ISL-λ? As functions of course! For this problem you
will implement a “class” of Point objects. A Point is an object-oriented (OO)
representation of coordinates (similar to Posns), though you don’t need to know
anything about objects to do this problem; just pay careful attention to the descrip-
tion and the examples.

Design a function new-point that consumes two numbers (an x- and a y-
coordinate) and produces a Point.

;; new-point : Number Number -> Point

A Point is a function that responds to messages. A message is sent by applying
a Point to a Symbol that matches the message’s name. The object reacts by
producing a value, which is frequently a “method,” that is, a function that will
carry out some task on behalf of the object.

Here are the contracts of the messages your Point representation must support:

Message Name Message Result Contract
’x Number
’y Number

’move [Number Number -> Point]
’same [Point -> Boolean]

Sending a Point the message ’x (in other words, applying a Point to the
symbol ’x) returns a number that represents the x-coordinate of the point (the
first argument to new-point); sending ’y returns the y-coordinate. Sending
a Point the message ’move returns a function that consumes x and y offsets
and constructs a new point with x and y moved by the given amounts. Sending
a Point the message ’same returns a function that when applied to another
Point determines if the points have the same x- and y-coordinates.

Hint: The next page contains some examples/tests to further clarify the details.

Task: Design new-point.

4



;; Example Points...
(define p0 (new-point 0 0))
(define p1 (new-point 3 4))

;; Tests for each ’message’
(check-expect (p1 ’y) 4)
(check-expect (* (p1 ’x) (p1 ’y)) 12)

(check-expect (((p1 ’move) 14 13) ’x) 17)

(check-expect ((p1 ’same) p0) false)
(check-expect ((p1 ’same) p1) true)
(check-expect ((((p1 ’move) -3 -4) ’same) p0) true)

5



[Here is some more space for the previous problem.]

6



8 POINTSProblem 3 Your startup company hires a Northeastern co-op who spends six
months coding up a very large and complex library for doing 2D computational
geometry. On the student’s last day at the company, disaster strikes: a demo of
his library reveals that he has used algorithms for his libary that all rely on rect-
angular coordinates to represent 2D points on a plane using posns, while your
company’s applications, databases, etc. all represent data using polar coordinates.
No one remembered to tell him that your company’s code all represents points us-
ing polar structs:

;; A PolarPt is: (make-polar Number Number)
(define-struct polar (r theta))

Six months of work. . . down the drain.
Or is it? In a fit of inspiration, you sit down and wish up a function,

rect-fun->polar-fun

The input to this function is another function, f , that consumes a posn repre-
senting a point on the plane in (x, y) rectangular coordinates and produces some
value. The output of your function is a polar-coordinate version of f , that is, a
function g that consumes a PolarPt representing a point on the plane in (r, θ)
polar coordinates, and produces a result equivalent to what f would when ap-
plied to (x, y). (Recall that a point which is at (r, θ) in polar coordinates is at
(r cos θ, r sin θ) in rectangular coordinates.)

If only you had this function, you could use it to convert all the functions in the
student’s library that consume rectangular-coordinate points to equivalent func-
tions that consume polar-coordinate points—which means (1) that they then could
be used by all the programmers at your company, (2) your poor co-op wouldn’t
have to commit ritual suicide, and (3) your boss would double your stock-option
grant in gratitude. Not bad, for a couple of lines of code.

Stop wishing and design rect-fun->polar-fun.

7



Here is an example of a function that expects rectangular coordinates and a
function constructed with rect-fun->polar-fun that does the same for po-
lar coordinates. (You can consider this the test for your function, so no need to
write more check-expects.)

;; Posn -> Number
;; Compute distance to origin of a rectangular point.
(define (rect-dist p)

(sqrt (+ (sqr (posn-x p))
(sqr (posn-y p)))))

;; PolarPt -> Number
;; Compute distance to origin of a polar point.
(define polar-dist

(rect-fun->polar-fun rect-dist))

(check-expect (polar-dist (make-polar 1 0)) 1)
(check-expect (polar-dist (make-polar 5 13)) 5)

8



[Here is some more space for the previous problem.]

9


