CSU2500 Exam 2 — Fall 2010

Name:

Student Id (last 4 digits):

Section (morning, honors or afternoon):

e Write down the answers in the
space provided.

e You may use the usual primitives
and expression forms, including
those suggested in hints; for every-
thing else, define it.

Problem | Points /out of

e You may write ¢ — e in place 1 16

of (check-expect c e) to save 2 13

time writing. You may also 3 8

write the Greek letter \ instead of + 6

lambda, to save writing. 5 13

. _ ' Extra 6

e Some basic test taking . advice: Total 62
Before you start answering any Base 56

problems, read every problem, so
your brain can be thinking about
the harder problems in background
while you knock off the easy ones.

Good luck!



Going Postal

The Programming Research Lab (PRL) at Northeastern, which includes the
2500 professors and many of your TAs, was invited for a field trip to Google’s lab
in Kendall Square today. Russ Cox, the guy who led the design and implementa-
tion of Google Code Search, asked the PRL team to come have lunch, meet with
some engineers, and pitch their new project: a next generation webmail program
the PRL hopes will replace GMail.

Unfortunately, on the night before the visit, many of the PRL team were pre-
occupied writing an exam for the intro to programming course. As a consequence,
they ran out of time to finish their prototype of the “NUPostal” mail system. (If
only they had started earlier!) Not wanting to miss the chance to write the suc-
cessor to one of the world’s most widely used web applications, or a free lunch,
the PRL decided to show Russ and the Google engineers their data definitions
and describe the design, but explained they’d have to send in the actual program
later. Russ liked the data definitions and agreed to let the PRL team submit their
program later; but the enginners would need to start reviewing the program no
later than 9 P.M. that night. As Russ walked the group back to the red line, he
said NUPostal could go live as early at 2 A.M., assuming the program was well
designed.

Excited by the prospect, the PRL team came back to Northeastern, but quickly
realized there was no way they could finish their NUPostal program and adminis-
ter the exam. But then, in a moment of inspired deliberation on how to get out of
this pickle, it came to them: let’s have you do it! (Twice!)

The next two problems ask you to develop key components of the NUPostal
system: once with structural recursion, and once with loop functions.



Problem 1 Here are the data definitions pitched to Google:

;3 A MailBox is a [Listof Email].

;; An Email is a (make-email Address String String).
(define-struct email (from subject body))

;; An Address is a Symbol. For example, ’wizwoz@foobar.com

Important: For this problem, you must use the design recipe for structural recur-
sion (in particular, you should not use loop functions; for that, see problem 2).

A) Design the program emails-from that, given a mailbox and an email ad-
dress, computes the list of emails that are from the given address in the
mailbox.

B) Design the program subjects that computes the list of email subjects in a
given mailbox.

C) Design the program total-size that computes the total size of a given
mailbox in terms of the length of all the email bodies in it. Again, do not
include the size of the from address or the subject line in your total—just
the message bodies.



[Here is some more space for the previous problem.]



[Here is some more space for the previous problem.]



Problem 2 The programs of the previous problem, if developed with the design
recipe for structural recursion, should follow patterns abstracted by one of the loop
functions. For each of the programs you wrote, re-write it using a loop function.
In each case, one loop function should suffice.
Since you have already written the contract and purpose statement (right? it is
Google policy, after all) you only need to write the function definitions.

A) Write emails-from using a loop function.
B) Write subjects using a loop function.

C) Write total-size using a loop function.



[Here is some more space for the previous problem.]



Problem 3 Design a function, weaver, that weaves two lists into a single list by
alternating their elements. Make sure you give it a general contract.

Here are some tests/examples to further explain:

(check-expect (weaver empty (list 1)) (1list 1))
(check-expect (weaver (list "Hi" "Lo") empty) (list "Hi" "Lo"))
(check-expect (weaver (list 1 2) (list 3 4))
(l1ist 1 3 2 4))
(check-expect (weaver (list ’R ’C ’R) (list ’A ’E))
(1ist R ’A ’C ’E ’R))



[Here is some more space for the previous problem.]



Problem 4 Here is a definition of a function, do-while, that does something.
Study the definition, and give it a general contract.

(define (do-while ys go what)
(cond [(empty? ys) empty]
[(not (go (first ys))) emptyl
[else
(cons (what (first ys))
(do-while (rest ys) go what))]))

10



Problem 5 You’ve seen lists built with cons throughout the semester, where el-
ements are added onto the front of a list. Less well known are snoc lists, where
elements are added onto the end of a list.

;3 A [SnocListof X] is one of:

;5 — empty

;3 — (make-snoc [SnocListof X] X)
(define-struct snoc (front last))

For instance, we would represent the list > (1 2 3) as:
(make-snoc (make-snoc (make-snoc empty 1) 2) 3)

A new social-media/messaging company, Blather, uses this data format exten-
sively, and wants to be able to use the familiar loop functions, even with their
backwards lists.

Help them by designing the abstract loop function, snoc-filter, which takes
a predicate and a [SnocListof X] and returns a snoc list that contains only the
elements for which the predicate returns true.

Here’s a couple examples/tests to clarify:

(define slst (make-snoc (make-snoc (make-snoc empty 1) 2) 3))
(check-expect (snoc-filter odd? slst)

(make-snoc (make-snoc empty 1) 3))
(check-expect (snoc-filter even? sl)

(make-snoc empty 2))

11



[Here is some more space for the previous problem.]

12



Problem 6 (Extra credit)

Shivers and Van Horn have been acting suspicious lately, and Chadwick sus-
pects that they’ve been planning something behind his back. He noticed that
they’ve been passing “secret” messages. And the message format? Of course
they’re using lists of Numbers! He’s intercepted a few of their messages, and
thinks that the secret code is based on binary trees of Strings.

Here’s his data-definition:

;3 A CodeTree is one of

;3 — String

;7 - (make-node CodeTree CodeTree)
(define-struct node (zero one))

The idea is to encode each letter of the message as a Number that represents a path
from the root of a CodeTree to a String at a leaf, where going to the left (zero)
means the number is even, and going right (one) means the number is odd.

For example, here’s a tree that encodes "a" as the number 0, and "b" as the
number 1:

(make-node "a" "b")

Of course, Shivers and Van Horn are smart, so they’ve encoded using a recursive
structure in order to have more than just 2 letters. For instance, the following tree
encodes "a" as 0, "b" as 2, "c" as 1, and "d" as 3:

(make-node (make-node "a" "b")
(make-node "c" "d"))

Note that (i) the deeper the tree, the longer the numbers, (ii) the encodings of "a"
and "b" are the ones from before multiplied by 2, and (iii) the encodings of "c"
and "d" can be seen as (1+0) and (1+2) respectively.

Your task: write a function, message, that accepts a [Listof Number] and a
CodeTree, and returns the corresponding decoded message. Hint: it’s helpful
to design a function decode that decodes a single Number into its corresponding
String, given a CodeTree.

The next page contains some helpful tests/examples for both functions.

13



(define t-1 (make-node "m" "o"))
(define t-2 (make-node (make-node "w" "t")
(make-node "e" "s")))

(check-expect (decode 0 t-1) "m"
(check-expect (decode 0 t-2) "w")
(check-expect (decode 3 t-2) "s")

(check-expect (message ’(0 1 0) t-1) "mom")
(check-expect (message (0 1 1) t-1) "moo")
(check-expect (message (3 0 1 1 2) t-2) "sweet")
(check-expect (message (2 0 1 1 2) t-2) "tweet")

(check-expect (message (07 316 20 5)
(make-node
(make-node "c" (make-node "i" "w"))
(make-node (make-node "d" "k")
(make-node "a" "h"))))
"chadwick")

14



[Here is some more space for the previous problem.]

15



