
CSU211 Exam 2 – Fall 2007

Name:

Student Id (last 4 digits):

Instructor’s Name:

• Write down the answers in the
space provided.

• You may use the usual primitives
and expression forms, including
those suggested in hints; for every-
thing else, define it.

• The phrase “design this func-
tion/program” means that you
should apply the design recipe.
You are not required to provide
a template unless the problem
specifically asks for one. Be
prepared, however, to struggle with
the development of function bodies
if you choose to skip the template
step.

• You may obtain a maximum of 55
points: 50 for the first six problems;
and five extra-credit points for the
final problem.

• Some basic test taking advice:
Before you start answering any
problems, read every problem, so
your brain can be thinking about
the harder problems in background
while you knock off the easy ones.

Good luck!

Problem Points /out of
1 / 6
2 / 3
3 / 13
4 / 6
5 / 9
6 / 13

Extra / 5
Total / 55
Base 50



6 POINTSProblem 1

(define-struct student (name instructor awake? quizzes))

;;; A Student is (make-student String Symbol
;;; Boolean [Listof Number])
;;; where: instructor - one of ’Olin or ’David
;;; awake? - true if the student asks
;;; and answers questions in class
;;; quizzes - the list of grades assigned
;;; for the class quizzes

Design a function, instructor->students, that takes an instructor and
a list of students, and returns all the students in that instructor’s section.

2



3 POINTSProblem 2 Design the function prefix, which takes a number n, and a list, and
returns the list containing the first n elements of the input list. You may assume n
is a non-negative integer less than or equal to the length of the input list.

3



10 POINTSProblem 3 We order strings using lexicographic order, where, for example,

“cap” < “capillary” < “cats”

This is how we order words in a dictionary.
We can apply the idea of lexicographic order to lists of numbers. A list of

numbers a is lexicographically less than another list b if either (1) a is a proper
prefix of b, or (2) some element of a is less than the corresponding element of b,
and the two lists match identically on the preceeding elements. So, for example,

(lex< ’(3 -8) ’(3 -8 9 -100 5 7))
(lex< ’(3 2) ’(3 5))
(lex< ’(3 -8 9 -100 5 7) ’(3 -8 10 -500 -600 -999))

Design lex<, the comparison function that takes two lists of numbers as in-
puts, and determines if its first argument is lexicographically less than its second
argument.

4



[Here is some more space for the previous problem.]

5



13 POINTSProblem 4 Rewrite these functions to use loop functions instead of explicit re-
cursion. You may use lambda and local in your definitions.

;;; contains? : [Setof Number] Number -> Boolean
;;; Is the number in the set?
;;; (We represent sets with lists of elements,
;;; repetition permitted.)
(define (contains? ys x)

(cond [(empty? ys) false]
[else (cond [(= x (first ys)) true]

[else (contains? (rest ys) x)])]))

6



;;; union : [Setof Number] [Setof Number] -> [Setof Number]
;;; Union two sets of numbers, where sets are represented
;;; as lists WITH NO REPETITIONS PERMITTED.
(define (union a b)

(cond ((empty? a) b)
(else (local ((define elt (first a))

(define u (union (rest a) b)))
(cond ((contains? u elt) u)

(else (cons elt u)))))))

7



;;; increment-by : Number [Listof Number] -> [Listof Number]
;;; Increment every number in the list by the given amount.
(define (increment-by change nums)

(cond [(empty? nums) empty]
[else (cons (+ change (first nums))

(increment-by change (rest nums)))]))

8



6 POINTSProblem 5 What is the contract for this function?

(define (count test xs)
(cond [(empty? xs) 0]

[else (local [(define n (count test (rest xs)))]
(cond [(test (first xs)) (+ 1 n)]

[else n]))]))

9



9 POINTSProblem 6 You have a summer job developing code at a company that uses a
cheap, cut-rate Scheme system, PowerSkeem!, which the owner’s nephew wrote.
The bad news is that PowerSkeem!, among many other problems, doesn’t have the
map or filter functions. The partial good news is that it does have a foldr
function.

It’s going to take you some time to convince your boss to switch over to
Dr. Scheme. In the meantime, you’d like to program using map and filter.
So you need to define them first. Fortunately, you’re sophisticated enough to re-
alise that you can write both map and filter rather compactly using foldr.

Your task: Design map and filter using foldr. You may use lambda or
local, if needed.

10



[Here is some more space for the previous problem.]

11



13 POINTSProblem 7 (Extra credit)
Alas, the entire number system in our Scheme system appears to be deeply

broken—adding 3 to 5 produces 8 sometimes, but other times, it produces 95.
We’re not entirely sure why. These things happen.

While we investigate the problem, we are working around it by defining our
own number system, without using any of the built-in Scheme numbers.

We start with the following structure and data definition:

(define-struct double (n))
(define-struct doubleplus (n))

;;; A BNum is one of
;;; - ’zero (represents 0)
;;; - (make-double BNum) (represents 2*n)
;;; - (make-doubleplus BNum) (represents 1+2*n)

Thus, the BNum representing 3 is:

;;; 3 = 1 + 2 * (1 + 2 * 0)
(make-doubleplus (make-doubleplus ’zero))

• Write down the BNums for the numbers 0, 5 and 10.

12



• We hired a coop student to implement a full suite of numeric operations
using BNums. She successfully implemented an addition operation,

(b+ bnum bnum)

and was starting on the multiply operation,

(b+ bnum bnum)

when she was tragically killed by a stray ricochet while driving golf balls in
her dorm shower. We’ve hired you to finish the job (with the programming,
that is, not the golf balls).

Please design the function b* that will multiply two BNums. You may
assume b+ has already been written.

13


