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Brains
• ~1011 neurons of > 20 types, ~1014 synapses,
1-10ms cycle time

• Signals are noisy spike trains of electrical potential

• Synaptic strength believed to increase or decrease 
with use (�learning?)
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A Neuron
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Linear Threshold Unit

Simple Perceptron Unit

Threshold Logic Unit
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Boolean interpretation: 0 � false, 1 � true
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Note that 

000

0 1

0 wxwxwxw
n

j

n

j

jjjj −=−>⇔>∑ ∑
= =

Thus an equivalent formulation is to take the appropriate 
weighted sum involving only the true (external) inputs 
and compare it against the threshold –w0

The use of a bias input of 1 and a corresponding bias 
weight is a mathematical device to allow us to treat 
the threshold as just another weight
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Implementing Boolean Functions
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At-least-k-out-of-n gate

Generalizes AND, OR

Implementing Boolean Functions (cont.)

Challenge: Write a Boolean expression for this

Another challenge: Construct a decision tree for this
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Geometric Interpretation

Define

and 
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Geometric Interpretation (cont.)

This separator is a hyperplane in n-dimensional space 
with normal vector     and whose distance to the 
origin is w/0w
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Thus the functions realizable by a 

simple perceptron unit are 
called linearly separable
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Boolean examples
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w1 = 1

w2 = 1
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x1 AND x2
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x1 + x2 = 1.5x1 + x2 = 0.5
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Boolean examples (cont.)
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x1 AND NOT x2

w1 = 1

w2 = -1

w0 = -0.5

x1 - x2 = 0.5
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But ...

1x

2x

x1 XOR x2

• Not linearly separable

• XOR and its negation are the 
only Boolean functions of two 
arguments that are not linearly 
separable

• However, for larger and larger 
n, the number of linearly 
separable Boolean functions 
grows much more slowly than 
the number of possible Boolean 
functions  

Artificial Neural Networks: Slide 14

What about learning?

• Start with training data {(xr, dr)}, where each 
input/desired output pair is indexed by r = 1, ..., R 
and                                  represents the input 
(this time augmented by the bias input         )

• Each dr is of course either 0 or 1

• The objective is to find a weight vector
such that

agrees with dr for each r, where
g is the hard-limiting threshold function
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Perceptron algorithm

(any initial values ok)

repeat

for r=1 to R

until no errors

is the learning rate

It can be taken to be 1 when inputs are 0 and 1

In that case, body of inner loop is:

• if actual output too small, add input vector to weight vector

• if actual output too large, subtract input vector from weight vector

• else don’t change weights
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Perceptron algorithm (cont.)

• Easy to check that this moves weights greedily in 
correct direction for the current training example

• Convergence theorem: For any linearly separable 
training data, the algorithm converges to a 
solution (as long as the learning rate is suitably 
small).  But if the data is not linearly separable, 
the weights loop indefinitely.
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Multilayer Networks

• This algorithm has been known since ~1960 
(Rosenblatt)

• But the most interesting functions we might 
want to learn are not necessarily linearly 
separable

• Dilemma faced by ANN researchers between 
~1960 and ~1985:

• for greater expressiveness, need multilayer 
networks of these linear threshold units

• only known reasonable algorithm was for single-
layer networks (i.e., one layer of weights)
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Multilayer Networks (cont.)

. . .

Input

. . .

. . . . . .

Hidden
Output

We know how to train 
these weights, 

assuming the others 
are fixed

How should we train 
these weights?
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Learning in multilayer nets – basic idea

One general way to approach any learning 
problem:
• express the learning objective in terms of a 
function to optimize

• search the hypothesis space for a hypothesis 
giving the optimal value

Applied to a supervised learning task:
• for each possible hypothesis, define a measure 
of its overall error on the training data

• simplest way: define this error measure for each 
training example and then define the overall 
error measure as the sum of these
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Learning in multilayer nets
Define the error on the rth training example to be

where        and         are the desired and actual outputs,

respectively, of the ith unit for training example r.

This is a function of the network weights since       is.

Then define the overall error to be
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Gradient Descent
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dimensional, where 

N is the total 
number of weights 

in the network

Gradient           is a vector whose      component is       , 
where       is a weight in the network.
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Oh, oh ..., a problem

• For a network of linear threshold units, the 
gradient is zero everywhere it exists (which 
is almost everywhere)

• The error function has a “terrace” shape –
flat everywhere with occasional “cliffs”

• So gradient descent useless in this case

• Now introduce a trick ...
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Sigmoid squashing function

Instead of the hard-limiting threshold function of the simple 
perceptron unit, use a smooth approximation to it
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“Soft” linear separation
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For any network of such sigmoid units, the network output 
is a smooth function of its input.

Thus so is the error function.

But how do we compute the necessary gradient?

It would be painful to write down an explicit expression 
for the network output (or the error) as a function of 
the network input and the weights.

Then imagine trying to differentiate it.

To the rescue: the chain rule
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The error backpropagation algorithm
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Derivation of backprop

Since

it follows that 

for any weight      .

Now we focus on how to compute            . 
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Derivation of backprop (cont.)

Since

we see that

Furthermore, 

so all that remains is to compute       for any unit i. 
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Derivation of backprop (cont.)

For each output unit i,

What about hidden units?

For each hidden unit i, let Downstream(i) = all units to which 
that unit directly sends its output.

Note that from the point of view of each unit k in 
Downstream(i), the output yi of unit i is the input xi of
unit k (i.e, the signal on the input with weight wki).
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Derivation of backprop (cont.)

Thus for hidden unit i,

using the fact that
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Backprop summary

• This gives a recursive formulation of how all the relevant 
intermediate quantities are computed.

• To do the computation iteratively, start at the output units, 
computing the appropriate ε and δ values there, then 
proceed through the network backwards until all units have 
the necessary δ values.

• It is more common to formulate this without explicitly 
identifying ε, although doing it our way more clearly 
demonstrates the general stage-wise organization of this 
computation.

• Here is the more common δ-only formulation of backprop:
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Backprop algorithm – single step

Basic single forward/backward computation for a given 
input/desired output pair:

1. Place the input vector at the input nodes and propagate 
forward

2. At each output node i, compute

3. At each hidden node i, compute

4. For each weight       compute 
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Derivative of squashing function

• If the squashing function is the logistic function

the derivative has the convenient form

• Another popular choice of squashing function is tanh, which 
takes values in the range (-1,1) rather than (0,1) 

• requires plugging a different g’ into the algorithm
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Exercise: 

Prove this
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The full backprop algorithm

Initialize weights to small random values

Repeat until satisfied

For each training example r

Do one forward and backward pass to compute 
for each adjustable weight

Batch version: accumulate these values over the training 
set, then do

Incremental version: inside inner loop do 
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Remarks
• Batch version represents true gradient descent
• Incremental version only an approximation, but often 
converges faster in practice

• Many variations:
• Momentum – essentially smooths successive weight 
changes

• Different values of η for different units, or as function of 
time, or adapted based on still other considerations

• Use of second-order techniques or approximations to 
them

• Drawbacks
• May take many iterations to converge
• May converge to suboptimal local minima
• Learned network may be hard to interpret in human-
understandable terms
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Remarks (cont.)

• Gradient-based “credit assignment”

• make changes to all parameters where such changes 
would contribute some beneficial effect

• size of change proportional to sensitivity – make larger 
changes to parameters to which beneficial outcome 
most sensitive
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Practical considerations

• Useful squashing functions only approach their 
extreme values asymptotically

• E.g., logistic function can never actually attain 
values of 0 or 1

• With such output units, training to unattainable 
output values would never terminate

• Instead, in practice use either

• a dead zone: e.g., train to targets of 0 and 1 but 
consider any output within a tolerance of, say, 0.1 to be 
correct

• targets of, say, 0.1 and 0.9 in place of 0 and 1, 
respectively
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Neural net representations
• Have to encode all possible input and output as Euclidean 
vectors

• What if input or output is discrete (e.g., symbolic)?

• If exactly two possible values, one natural encoding would 
be to use 0 for one of these and 1 for the other

• Alternative encoding that works for any finite number of 
values: use a separate node for each value and set exactly 
one node to 1 and all others to 0

• called 1-out-of-n or radio button encoding

• But if the values have a natural topology (e.g., fall on an 
ordinal scale), might make sense to use an encoding that 
captures this
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Representation example

• Consider Outlook = Sunny, Overcast, or Rain

• 1-out-of-3 encoding:

• Sunny � 1 0 0

• Overcast � 0 1 0

• Rain � 0 0 1

• Treating Overcast as halfway between Sunny and 
Rain:

• Sunny � 0.0

• Overcast � 0.5

• Rain � 1.0

• Such choices help determine the underlying 
inductive bias

Uses 3 input nodes

Uses 1 input node
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Other considerations
• Avoiding overfitting

• early stopping

• explicit penalty terms

• weight decay

• Incorporating prior knowledge

• enforcing invariances through “weight sharing”

• limiting connectivity

• letting some of the input represent more complex 
precomputed features

• initializing the network according to a best guess, then 
letting backprop fine-tune the weights

• setting some weights by hand and keeping them fixed
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Avoiding overfitting by early stopping

% correct

Epochs

100

Training Set

Validation Set
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Expressiveness

• Any continuous function can be 
approximated arbitrary closely over a 
bounded region by a two-layer network with 
sigmoid squashing functions in the hidden 
layer and linear units in the output layer 
(given enough hidden units)
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Inductive bias

• When weights are close to zero, behavior is 
approximately linear

• Keeping weights near zero gives a 
preference bias toward linear functions

Artificial Neural Networks: Slide 45

Wide variety of applications
• Speech recognition

• Autonomous driving

• Handwritten digit recognition

• Credit approval

• But may be hard to translate network behavior into 
more explicit, easily-understood rules

• Backgammon

• Etc.

Generally appropriate for problems where the final answer 
depends heavily on combinations of many input features

Decision trees might be better when decisions depend on 
only a small subset of the input features
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ALVINN: autonomous vehicle
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Handwritten digit recognition
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Accuracy on test digits

• 3-nearest-neighbor � 2.4% error

• 400-300-10 unit MLP � 1.6% error

• LeNet: 768-192-30-10 unit MLP � 0.9%

• limited connectivity to enforce locality 
constraints

• weight sharing to create translation-invariant 
features (learned)
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Summary
• Most brains have lots of neurons, so maybe the kinds of 
computing that brains are good at are best accomplished 
by large networks of simple computing units (linear 
threshold units?)

• One-layer networks insufficiently expressive

• Multilayer networks are sufficiently expressive and can be 
trained by gradient descent, i.e., error backpropagation

• Some general-purpose ways to look at learning
• Formulation as an optimization problem

• Gradient search when appropriate 

• Various techniques for incorporating prior knowledge and 
for avoiding overfitting

• Many applications

• Even some temporal behaviors can be trained by 
backpropagation-like gradient descent algorithms 


