
1

Artificial Neural Networks

Ronald J. Williams

CSU520, Spring 2008

Artificial Neural Networks: Slide 2

Brains
• ~1011 neurons of > 20 types, ~1014 synapses,
1-10ms cycle time

• Signals are noisy spike trains of electrical potential

• Synaptic strength believed to increase or decrease
with use (�learning?)

Artificial Neural Networks: Slide 3

A Neuron

Artificial Neural Networks: Slide 4

∑ g

x0 = 1

x1

x2

xn

s
y. . .

w0

w1

w2

wn

Standard ANN “Neuron” or Unit
Bias Input

Bias Weight

E
x
te
rn
a
l
In
p
u
t

Output
Squashing

Function

)(

0

sgy

xws
n

j

jj

=

=∑
=

For learning or for hand-
designing, weights wj

are adjustable
parameters

{

Artificial Neural Networks: Slide 5

s

g(s)

Linear Threshold Unit

Simple Perceptron Unit

Threshold Logic Unit

Use “hard-limiting”
squashing function

≤

>
=

0if0

0if1
)(

s

s
sg

Boolean interpretation: 0 � false, 1 � true

Artificial Neural Networks: Slide 6

Note that

000

0 1

0 wxwxwxw
n

j

n

j

jjjj −=−>⇔>∑ ∑
= =

Thus an equivalent formulation is to take the appropriate
weighted sum involving only the true (external) inputs
and compare it against the threshold –w0

The use of a bias input of 1 and a corresponding bias
weight is a mathematical device to allow us to treat
the threshold as just another weight

2

Artificial Neural Networks: Slide 7

Implementing Boolean Functions

x1

x2

1

1

1
-0.5

x1 OR x2

x1

x2

1

1

1
-1.5

x1 AND x2

x1
-1

1
0.5

NOT x1

Artificial Neural Networks: Slide 8

x1

xn

1

1

1
k-0.5

. . .

At-least-k-out-of-n gate

Generalizes AND, OR

Implementing Boolean Functions (cont.)

Challenge: Write a Boolean expression for this

Another challenge: Construct a decision tree for this

Artificial Neural Networks: Slide 9

Geometric Interpretation

Define

and

),,(,21 nxxx K=x

),,(,21 nwww K=w

I.e., here the bias input

and bias weight are
not included

Then the output of the unit is determined by the sign of

0

0

wxw j

n

j

j +⋅=∑
=

xw

so the separator between the y=0 and y=1 regions of

the input space consists of all points x for which

00 =+⋅ wxw

Artificial Neural Networks: Slide 10

Geometric Interpretation (cont.)

This separator is a hyperplane in n-dimensional space
with normal vector and whose distance to the
origin is w/0w

w

1x

2x

w

separator

Thus the functions realizable by a

simple perceptron unit are
called linearly separable

Artificial Neural Networks: Slide 11

Boolean examples

1x

2x

x1 OR x2

w1 = 1

w2 = 1

w0 = -0.5

1x

2x

x1 AND x2

w1 = 1

w2 = 1

w0 = -1.5

x1 + x2 = 1.5x1 + x2 = 0.5

Artificial Neural Networks: Slide 12

Boolean examples (cont.)

1x

2x

x1 AND NOT x2

w1 = 1

w2 = -1

w0 = -0.5

x1 - x2 = 0.5

3

Artificial Neural Networks: Slide 13

But ...

1x

2x

x1 XOR x2

• Not linearly separable

• XOR and its negation are the
only Boolean functions of two
arguments that are not linearly
separable

• However, for larger and larger
n, the number of linearly
separable Boolean functions
grows much more slowly than
the number of possible Boolean
functions

Artificial Neural Networks: Slide 14

What about learning?

• Start with training data {(xr, dr)}, where each
input/desired output pair is indexed by r = 1, ..., R
and represents the input
(this time augmented by the bias input)

• Each dr is of course either 0 or 1

• The objective is to find a weight vector
such that

agrees with dr for each r, where
g is the hard-limiting threshold function

),,,,1(21

r

n

rrr
xxx K=x

10 =r
x

),,,,(210 nwwww K=w

)(
rr

gy xw ⋅=

Artificial Neural Networks: Slide 15

Perceptron algorithm

(any initial values ok)

repeat

for r=1 to R

until no errors

is the learning rate

It can be taken to be 1 when inputs are 0 and 1

In that case, body of inner loop is:

• if actual output too small, add input vector to weight vector

• if actual output too large, subtract input vector from weight vector

• else don’t change weights

rrr
yd xww)(−+← η

0w ←

0>η

Artificial Neural Networks: Slide 16

Perceptron algorithm (cont.)

• Easy to check that this moves weights greedily in
correct direction for the current training example

• Convergence theorem: For any linearly separable
training data, the algorithm converges to a
solution (as long as the learning rate is suitably
small). But if the data is not linearly separable,
the weights loop indefinitely.

Artificial Neural Networks: Slide 17

Multilayer Networks

• This algorithm has been known since ~1960
(Rosenblatt)

• But the most interesting functions we might
want to learn are not necessarily linearly
separable

• Dilemma faced by ANN researchers between
~1960 and ~1985:

• for greater expressiveness, need multilayer
networks of these linear threshold units

• only known reasonable algorithm was for single-
layer networks (i.e., one layer of weights)

Artificial Neural Networks: Slide 18

Multilayer Networks (cont.)

. . .

Input

. . .

.

Hidden
Output

We know how to train
these weights,

assuming the others
are fixed

How should we train
these weights?

4

Artificial Neural Networks: Slide 19

Learning in multilayer nets – basic idea

One general way to approach any learning
problem:
• express the learning objective in terms of a
function to optimize

• search the hypothesis space for a hypothesis
giving the optimal value

Applied to a supervised learning task:
• for each possible hypothesis, define a measure
of its overall error on the training data

• simplest way: define this error measure for each
training example and then define the overall
error measure as the sum of these

Artificial Neural Networks: Slide 20

∑ g

x0 = 1

x1

x2

xn

si
yi. . .

wi0

wi1

wi2

win

Expanded notation: necessary since using multiple units

ith unit

)(

0

ii

n

j

jiji

sgy

xws

=

=∑
=

Artificial Neural Networks: Slide 21

Learning in multilayer nets
Define the error on the rth training example to be

where and are the desired and actual outputs,

respectively, of the ith unit for training example r.

This is a function of the network weights since is.

Then define the overall error to be

2

sOutputUnit

)(
2

1 r

i

i

r

i

r
ydE −= ∑

∈

r

id r

iy

r

iy

∑=
r

r
EE

Artificial Neural Networks: Slide 22

Gradient Descent

E
rr
o
r

Weight space is N-
dimensional, where

N is the total
number of weights

in the network

Gradient is a vector whose component is ,
where is a weight in the network.

Gradient descent: increment each by

E
W

∇ thα
αw

E

∂

∂

αw

αw
α

α η
w

E
w

∂

∂
−=∆

Artificial Neural Networks: Slide 23

Oh, oh ..., a problem

• For a network of linear threshold units, the
gradient is zero everywhere it exists (which
is almost everywhere)

• The error function has a “terrace” shape –
flat everywhere with occasional “cliffs”

• So gradient descent useless in this case

• Now introduce a trick ...

Artificial Neural Networks: Slide 24

Sigmoid squashing function

Instead of the hard-limiting threshold function of the simple
perceptron unit, use a smooth approximation to it

g(si)

si

Commonly used:
se

sg
−+

=
1

1
)(Logistic function

5

Artificial Neural Networks: Slide 25

“Soft” linear separation

Artificial Neural Networks: Slide 26

For any network of such sigmoid units, the network output
is a smooth function of its input.

Thus so is the error function.

But how do we compute the necessary gradient?

It would be painful to write down an explicit expression
for the network output (or the error) as a function of
the network input and the weights.

Then imagine trying to differentiate it.

To the rescue: the chain rule

Artificial Neural Networks: Slide 27

The error backpropagation algorithm

∑ g

x0 = 1

x1

x2

xn

si
yi. . .

wi0

wi1

wi2

win

ith unit
For training example r, define

and
i

r
r

i
y

E

∂

∂
−=ε

i

r
r

i
s

E

∂

∂
−=δ

δi εi

For simplicity, we henceforth
suppress the superscript r

except on Er
Can interpret δi and εi as sensitivities

Artificial Neural Networks: Slide 28

Derivation of backprop

Since

it follows that

for any weight .

Now we focus on how to compute .

∑=
r

r
EE

∑
∂

∂
=

∂

∂

r ij

r

ij w

E

w

E

ijw

ij

r

w

E

∂

∂
−

Artificial Neural Networks: Slide 29

Derivation of backprop (cont.)

Since

we see that

Furthermore,

so all that remains is to compute for any unit i.

j

j

iji xws ∑=

ji

ij

i

i

r

ij

r

x
w

s

s

E

w

E
δ=

∂

∂

∂

∂
−=

∂

∂
−

)(ii

i

i

i

r

i

r

i sg
ds

dy

y

E

s

E
′=

∂

∂
−=

∂

∂
−= εδ

iε

Artificial Neural Networks: Slide 30

Derivation of backprop (cont.)

For each output unit i,

What about hidden units?

For each hidden unit i, let Downstream(i) = all units to which
that unit directly sends its output.

Note that from the point of view of each unit k in
Downstream(i), the output yi of unit i is the input xi of
unit k (i.e, the signal on the input with weight wki).

ii

k

kk

ii

r

i ydyd
yy

E
−=

−

∂

∂
−=

∂

∂
−= ∑

∈ sOutputUnit

2)(
2

1
ε

6

Artificial Neural Networks: Slide 31

Derivation of backprop (cont.)

Thus for hidden unit i,

using the fact that

so

ki

ik

k

i

k

ik k

r

i

r

i w
y

s

s

E

y

E
∑∑

∈∈

=
∂

∂

∂

∂
−=

∂

∂
−=

)(Downstream)(Downstream

δε

j

j

kjk xws ∑=

ki

i

k

i

k w
x

s

y

s
=

∂

∂
=

∂

∂

Artificial Neural Networks: Slide 32

Backprop summary

• This gives a recursive formulation of how all the relevant
intermediate quantities are computed.

• To do the computation iteratively, start at the output units,
computing the appropriate ε and δ values there, then
proceed through the network backwards until all units have
the necessary δ values.

• It is more common to formulate this without explicitly
identifying ε, although doing it our way more clearly
demonstrates the general stage-wise organization of this
computation.

• Here is the more common δ-only formulation of backprop:

Artificial Neural Networks: Slide 33

Backprop algorithm – single step

Basic single forward/backward computation for a given
input/desired output pair:

1. Place the input vector at the input nodes and propagate
forward

2. At each output node i, compute

3. At each hidden node i, compute

4. For each weight compute

))((iiii ydsg −′=δ

∑
∈

′=
)(Downstream

)(
ik

kkiii wsg δδ

ijw
ji xδ

Artificial Neural Networks: Slide 34

Derivative of squashing function

• If the squashing function is the logistic function

the derivative has the convenient form

• Another popular choice of squashing function is tanh, which
takes values in the range (-1,1) rather than (0,1)

• requires plugging a different g’ into the algorithm

isi
e

sg
−+

=
1

1
)(

)1())(1)(()(iiiii yysgsgsg −=−=′
Exercise:

Prove this

Artificial Neural Networks: Slide 35

The full backprop algorithm

Initialize weights to small random values

Repeat until satisfied

For each training example r

Do one forward and backward pass to compute
for each adjustable weight

Batch version: accumulate these values over the training
set, then do

Incremental version: inside inner loop do

r

j

r

r

iijij xww ∑+← δη

ijw

r

j

r

i xδ

r

j

r

iijij xww ηδ+←

Artificial Neural Networks: Slide 36

Remarks
• Batch version represents true gradient descent
• Incremental version only an approximation, but often
converges faster in practice

• Many variations:
• Momentum – essentially smooths successive weight
changes

• Different values of η for different units, or as function of
time, or adapted based on still other considerations

• Use of second-order techniques or approximations to
them

• Drawbacks
• May take many iterations to converge
• May converge to suboptimal local minima
• Learned network may be hard to interpret in human-
understandable terms

7

Artificial Neural Networks: Slide 37

Remarks (cont.)

• Gradient-based “credit assignment”

• make changes to all parameters where such changes
would contribute some beneficial effect

• size of change proportional to sensitivity – make larger
changes to parameters to which beneficial outcome
most sensitive

Artificial Neural Networks: Slide 38

Practical considerations

• Useful squashing functions only approach their
extreme values asymptotically

• E.g., logistic function can never actually attain
values of 0 or 1

• With such output units, training to unattainable
output values would never terminate

• Instead, in practice use either

• a dead zone: e.g., train to targets of 0 and 1 but
consider any output within a tolerance of, say, 0.1 to be
correct

• targets of, say, 0.1 and 0.9 in place of 0 and 1,
respectively

Artificial Neural Networks: Slide 39

Neural net representations
• Have to encode all possible input and output as Euclidean
vectors

• What if input or output is discrete (e.g., symbolic)?

• If exactly two possible values, one natural encoding would
be to use 0 for one of these and 1 for the other

• Alternative encoding that works for any finite number of
values: use a separate node for each value and set exactly
one node to 1 and all others to 0

• called 1-out-of-n or radio button encoding

• But if the values have a natural topology (e.g., fall on an
ordinal scale), might make sense to use an encoding that
captures this

Artificial Neural Networks: Slide 40

Representation example

• Consider Outlook = Sunny, Overcast, or Rain

• 1-out-of-3 encoding:

• Sunny � 1 0 0

• Overcast � 0 1 0

• Rain � 0 0 1

• Treating Overcast as halfway between Sunny and
Rain:

• Sunny � 0.0

• Overcast � 0.5

• Rain � 1.0

• Such choices help determine the underlying
inductive bias

Uses 3 input nodes

Uses 1 input node

Artificial Neural Networks: Slide 41

Other considerations
• Avoiding overfitting

• early stopping

• explicit penalty terms

• weight decay

• Incorporating prior knowledge

• enforcing invariances through “weight sharing”

• limiting connectivity

• letting some of the input represent more complex
precomputed features

• initializing the network according to a best guess, then
letting backprop fine-tune the weights

• setting some weights by hand and keeping them fixed

Artificial Neural Networks: Slide 42

Avoiding overfitting by early stopping

% correct

Epochs

100

Training Set

Validation Set

8

Artificial Neural Networks: Slide 43

Expressiveness

• Any continuous function can be
approximated arbitrary closely over a
bounded region by a two-layer network with
sigmoid squashing functions in the hidden
layer and linear units in the output layer
(given enough hidden units)

Artificial Neural Networks: Slide 44

Inductive bias

• When weights are close to zero, behavior is
approximately linear

• Keeping weights near zero gives a
preference bias toward linear functions

Artificial Neural Networks: Slide 45

Wide variety of applications
• Speech recognition

• Autonomous driving

• Handwritten digit recognition

• Credit approval

• But may be hard to translate network behavior into
more explicit, easily-understood rules

• Backgammon

• Etc.

Generally appropriate for problems where the final answer
depends heavily on combinations of many input features

Decision trees might be better when decisions depend on
only a small subset of the input features

Artificial Neural Networks: Slide 46

ALVINN: autonomous vehicle

Artificial Neural Networks: Slide 47

Handwritten digit recognition

Artificial Neural Networks: Slide 48

Accuracy on test digits

• 3-nearest-neighbor � 2.4% error

• 400-300-10 unit MLP � 1.6% error

• LeNet: 768-192-30-10 unit MLP � 0.9%

• limited connectivity to enforce locality
constraints

• weight sharing to create translation-invariant
features (learned)

9

Artificial Neural Networks: Slide 49

Summary
• Most brains have lots of neurons, so maybe the kinds of
computing that brains are good at are best accomplished
by large networks of simple computing units (linear
threshold units?)

• One-layer networks insufficiently expressive

• Multilayer networks are sufficiently expressive and can be
trained by gradient descent, i.e., error backpropagation

• Some general-purpose ways to look at learning
• Formulation as an optimization problem

• Gradient search when appropriate

• Various techniques for incorporating prior knowledge and
for avoiding overfitting

• Many applications

• Even some temporal behaviors can be trained by
backpropagation-like gradient descent algorithms

