A Closer Look at Aty

Recall that Ay = {(M,w) | M is a TM that accepts input string w}.

Consider any TM T that recognizes Ary.

e This means T takes input (M, w), where M is a TM and w is a string, and halts with accept
iff M accepts w.

e The TM simulator Simy we described earlier is an example of such a TM.

Define a corresponding TM S, using T' as a subprocedure, as follows:

S = “On input (M), where M is a TM:
1. Run T on input (M, (M)).
2. If T accepts, reject; if T rejects, accept.”

Clearly:
e L(S)={(M)| M is a TM that rejects (M)}

e l.e., S recognizes the language of TM encodings for TMs that reject their own encodings.

What happens when S is run with input (S)?

If S accepts (S), then:

— T must reject (S, (S)), so
— (S, (S)) does not belong to Aty so
— S does not accept (S) — Contradiction

If S rejects (S), then:

— T must accept (S, (S)), so
— (S, (S)) belongs to Arwn, so
— S accepts (S) — Contradiction

Thus S neither accepts nor rejects (S).

Therefore S must loop on (S).

A Closer Look at Aty (Continued)

So far:

e We assumed that T' is an arbitrary recognizer for

Aty = {(M,w) | M is a TM that accepts input string w}.
e We defined a corresponding TM S as follows:

S = “On input (M), where M is a TM:
1. Run T on input (M, (M)).
2. If T' accepts, reject; if T rejects, accept.”

e We showed that S loops on (S).

Could T be a decider?
e If it is then S is a decider.
e But S loops on some input, namely (S).
e Thus S is not a decider.

e Therefore T' cannot be a decider.

Since T was assumed to be an arbitrary recognizer for Ay, we conclude that:
e No recognizer for ATy can be a decider.

e Therefore Aty is an undecidable language.

Notice the Similarity?

Undecidability of Aru:

e S is a TM that recognizes the language of TM encodings for TMs that reject their own
encodings.

e Does S accept its own encoding?

Russell’s Paradox:
e Let R be the set of all sets that do not contain themselves as members. E.g.:

— The set of all motorcycles is in R.

— The set of all non-motorcycles is not in R.

e Does R contain itself as a member?

The barber paradox:

e In a certain village there is a man who is a barber. He shaves all and only those men in the
village who do not shave themselves.

e Does this barber shave himself?

A Non-Turing-Recognizable Language

Definition. A language is co-Turing-recognizable if its complement is Turing-recognizable.

Theorem. A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.
Proof.

e “Only if” direction:

— If L is decidable, its complement L is decidable. (This was a homework problem.)

— Since any decidable language is Turing-recognizable, it follows that both L and L are
Turing-recognizable.

o “If” direction:

Suppose both L and L are Turing-recognizable.

— Let My, be a recognizer for L and let M7 be a recognizer for L.

— Consider the following TM:

M = “On input (w):
1. Simulate running Mj, and M7 in parallel on w
(by using a 2-tape TM and alternately running one step of each at a time)

2. If My, accepts, accept; if M7 accepts, reject.”

— Every string w is either in L or L.

— If w € L, then M must halt and accept it.

— If w € L, then M+ must halt and accept it.

— Thus this TM halts on any input w.

— Therefore this TM is a decider.

— Since it accepts a string w iff w € L, it’s a decider for L.

— Therefore L is decidable.

Corollary. The complement of any undecidable Turing-recognizable language is non-Turing-
recognizable.

Proof. Let L be undecidable and Turing-recognizable. If L were Turing-recognizable, L would
be Turing-recognizable and co-Turing-recognizable, so it would be decidable, contradicting the
assumption that it is undecidable. Therefore, L cannot be Turing-recognizable.

Corollary. Aty is a non-Turing-recognizable language.

Proof. Arwm is Turing-recognizable since SimTy recognizes it, but, as we have just seen, it is not
decidable.

The Halting Problem

The decision problem: Given a TM M and a string w, does M halt when given input w?

The corresponding language:

HALT v = {{M,w) | M is a TM and M halts on input w}

Theorem. HALTT\ is an undecidable language.
Proof:

Assume for the sake of contradiction that HALT Ty is decidable, and let H be a decider for
it.

Given any TM M, we could then combine it with H to create a decider M’ for the language
L(M) as follows:

M' = “On input w:
1. Run H on input (M, w). If it rejects, reject.
2. Run M on w. If it accepts, accept; otherwise reject.”

Clearly:

— Since H is assumed to be a decider, stage 1 terminates.

— Since stage 2 is only run after H has determined that M would not loop on w, stage 2
also terminates.

— Therefore M' halts on all inputs.

— Therefore M’ is a decider
Also:

— M’ accepts w iff M accepts w.
— Therefore L(M') = L(M).

Thus the assumption that HA LT 1y is decidable allows a recognizer for any Turing-recognizable
language to be converted into a decider for that language.

Thus the assumption that HALT Ty is decidable implies that every Turing-recognizable lan-
guage is decidable.

Since A1y is Turing-recognizable but not decidable, the assumption that HALT 1y is decid-
able must be false.

Therefore HALT 1\ is undecidable.

General Notion of Reducibility

Useful strategy in any problem-solving context:
e Reduce a problem to one or more simpler subproblems.

e Then solve the original problem by first solving these simpler subproblems.

Examples in the specific context of algorithm design:
1. Sorting a list can be reduced to the problem of finding the smallest element in any list:!

e Find the smallest element in the original list.
e Remove this element to obtain a shorter list.
e Find the smallest element in this list.

e Etc.

2. The divide-and-conquer strategy amounts to reducing a problem involving a large object (e.g.,
a list) to subproblems involving objects (e.g., sublists) of about half its size. Examples:
e quicksort

e merge sort
3. Our proof of the undecidability of the Halting Problem was based on:

e assuming there was a decider for it; and

e showing how we could use such a decider, if it exists, as a subprocedure in the design of
a decider for any Turing-recognizable language.

Thus we showed that the problem of deciding any Turing-recognizable language reduces to
the problem of deciding the Halting Problem.

What these all have in common:

If we can reduce a given problem A to solvable problems By, Bs,..., B, we can then design a
procedure for solving the original problem by using solvers for By, By, ..., By as subprocedures.

Two ways to take advantage of such reductions:

1. Use solvers for the “reduced-to” (i.e., simpler) problem(s) to actually design a solver for the
“reduced-from” problem.

2. Assume for the sake of contradiction that the “reduced-to” problem(s) can be solved when we
know the “reduced-from” problem can’t be. This then proves that the assumption that the
“reduced-to” problem(s) can be solved must be false, so the “reduced-to” problem(s) can’t
be solved either. Our third example above used a reduction for this purpose.

Important: It is this latter use of reductions that makes them such an valuable tool in theoretical
computer science — to generate proofs by contradiction showing that certain algorithms cannot
exist. This is the main use we make of them here.

!This particular approach to sorting is called selection sort.

Undecidability of Ery

The decision problem: Given a TM M, is the language M recognizes empty?
The language: Ery = {(M) | M is a TM and L(M) = &}
Theorem. FEr); is undecidable.

Proof Idea:

o We assume for the sake of contradiction that this language is decidable and show that this
implies that Aty is decidable, which we know is false. From this contradiction we conclude
that ETy must be undecidable.

e The argument involves showing that the problem of deciding Aty instances reduces to the
problem of deciding Ery; instances.

e [.e., we show that the answer to the question of decidability of Ery provides an answer to
the question of decidability of Aty. In particular, we show that decidability of Fry implies
decidability of Ary;.

e The way we do this is to show how a TM can transform any Aty problem instance into a Eryy
problem instance in such a way that an accept/reject decision by an assumed Ery decider on
the transformed instance gives rise to a corresponding decision on the original A1y instance.

Here is a high-level description of the approach:
1. Transform any ATy problem instance into some FEryy problem instance.
2. Apply the assumed Ery decider to the transformed problem instance.

3. Use the answer provided by this decider to give an answer for the original Aty problem
instance.

This represents a particular way to design an Aty decider using an Fry decider as a subprocedure.

Key Challenge: determining how the transformation in step 1 of this description should be done so
that the final answers provided in step 3 are valid. Some basic observations on this transformation:

e Aty problem instances have the form (M, w), where M is a TM and w is a string.
e Ery problem instances have the form (M), where M is a TM.

e We will use (M') to denote the transformed version of (M, w).

Undecidability of Fry; (Continued)

What we need our transformation to do:

e Each (M, w) must be transformed to its corresponding (M') in such a way that accept/reject
decisions made by the Ety decider correspond (one way or the other) to the correct ac-
cept/reject decisions for Ary.

e This means that the language of the TM M’ whose encoding is the transformed problem
instance (M') must be

— empty whenever (M, w) € Ay (i.e., whenever M accepts w)
— non-empty whenever (M, w) ¢ Ay (i-e., whenever M does not accept w)

— or vice-versa

Consider this description of a TM M':

M'= “On input z:
1. Run M on input w.
2. If M accepts, accept; if M rejects, reject.”

Remarks:

e This TM will not actually be run or simulated. Instead, its encoding is all that will be used
by the actual TM about to be described.

e M' has M and w built into it and ignores its input z.

e All that matters is what language M' accepts, which we examine below. Another way to
design a TM that accepts exactly the same language would be to change line 2 so that if M
rejects w, this TM goes into an infinite loop.

What is L(M')?
e If M does not accept w, this TM accepts no strings, so L(M') = @ in this case.
e If M accepts w, this TM accepts all strings, so L(M') = 3* in this case.
e That is,
san={ 3 Fi i

e Therefore L(M') is non-empty exactly when M accepts w, i.e., exactly when (M, w) € Ay

Undecidability of Fry; (Continued)

Now that we’ve identified a way to transform ATy; problem instances into Fry problem instances
in a way that respects membership/non-membership distinctions, we restate the theorem and give
the full proof.

Theorem. FE1y is undecidable.
Proof.

e Assume for the sake of contradiction that Ery is decidable and let Dg.,, be a decider for it.

e Consider the following TM:

Dyyy = “Oninput (M, w), where M is a TM and w is a string:
1. Construct (M'), the encoding of the following TM:
“M'= *“On input z:
1. Run M on w.
2. If M accepts, accept; if M rejects, reject.”
2. Run the emptiness decider Dg,,, on input (M’).
3. If Dg,,, accepts, reject; if Dg,,, rejects, accept.”

e Since the construction of (M') from (M, w) can be carried out by a TM in a finite number of
steps, stage 1 terminates.

e Since D, is assumed to be a decider, stage 2 terminates as well.

e Therefore this TM is a decider.

e As discussed on the previous page, L(M') is empty iff (M, w) ¢ Aty
o Therefore this TM is a decider for Ay

e Since Ay is undecidable, the original assumption that Ery is undecidable must be false.

Here is a diagram illustrating the design of the above TM:

ATM Decider

accept reject

(M, w) (M)

Construct (M')

FEryv Decider reject accept

Mapping Reductions

Key ingredient in the proof just given that Ety is undecidable:

e showing that the problem of deciding membership in A1y reduces to the problem of deciding
membership in Ery;

e more precisely, designing the “Construct (M')” box in the diagram in such a way that
accept/reject decisions for the transformed Ery problem instance (M') yield correct ac-
cept/reject decisions for the original Ay problem instance (M, w).

We now isolate and formalize this notion.

Suppose that:
1. A and B are languages over an alphabet X.
2. There is a function f : ¥* — >* such that

e f can be computed by a TM; and
e we Aiff f(w) € B.

Note that this function f assigns to every member of A some member of B and it assigns to every
member of A some member of B. Thus, to test whether a given w € A, it is equivalent to test
whether f(w) € B. The answer to both questions is the same.

Definition. A function f is computable if there is a transducer TM that, when given any input w,
halts with only f(w) on its tape.

Definition. If A, B, and f satisfy conditions 1 and 2 above, then we say that f is a mapping
reduction from A to B and that A is mapping reducible to B, denoted® A <, B.

This is clearly a special case of the broader notion of reducibility described earlier. When language
A is mapping reducible to language B, i.e., A <, B, then the problem of testing membership in
A reduces, in the broader sense, to the problem of testing membership in B.

2A helpful intuition is to think of the inequality as representing the idea that A problem instances are “no harder

than” B problem instances to solve or, equivalently, that B problem instances are “at least as hard as” A problem
instances to solve. Here, by “solving a problem instance” we mean determining language membership.

10

Implications of Mapping Reducibility

Suppose that there is a mapping reduction f from language A to language B. The following diagram
depicts how a recognizer for A can be constructed by combining a TM that computes f with a
recognizer for B:

Recognizer for A

v TM for f f(w) Recognizer for B accept/’ reject

Here is a description of the above TM, where F' denotes the TM that computes f and Mp denotes
the recognizer for B:

M4 = “On input w:
1. Run F on w to compute f(w).
2. Run Mp on f(w). If it accepts, accept; if it rejects, reject.”

Theorem. Suppose A <., B. Then:
1. If B is Turing-recognizable, then A is Turing-recognizable.
2. If B is decidable, then A is decidable.

3. If A is non-Turing-recognizable, then B is non-Turing-recognizable.

4. If A is undecidable, then B is undecidable.

Proof. Let f denote the reduction. Recall that this means that it has the property that f(w) € B
iff w € A. For 1 and 2, just consider the diagram and/or description of M4 given above. If w € A,
then f(w) € B, so Mp accepts w, so M4 accepts w. If w ¢ A, then f(w) ¢ B, so Mp does not
accept w, so M4 does not accept w. Therefore M4 is a recognizer for A. Furthermore, step 1 always
terminates, so if Mp is a decider then so is M 4. Parts 3 and 4 are each just the contrapositives of
parts 1 and 2, respectively, so they follow immediately.

We’ll make extensive use of part 4 of this theorem to prove undecidability of several languages.

We’ll also use part 3 to prove some languages are not Turing-recognizable.

11

Observations on Mapping Reducibility

Easily proved facts about <:

Invariance under complement: A <., B if and only if A <., B.

Transitivity: If A <;,, B and B <, C, then A <., C.

These follow easily from the definition; you may find it a useful exercise to write down their proofs.

Have we already used mapping reductions and not realized it?

Yes. Examine the previous proofs of decidability we’ve covered or that are given in Chapter 4 of
Sipser. Implicit in some of these proofs are the following mapping reductions:

ANrFA <m Aprpa (using a mapping assigning to any NFA encoding the encoding of its corre-
sponding equivalent DFA)

Argex <m Anra (using a mapping assigning to any regular expression encoding the encoding
of its corresponding equivalent NFA)

SUBprA <m Epra (using a mapping assigning to any (D, Dy), where D; and D9 are DFAs,
the encoding of the DFA C' constructed so that L(C) = L(D,) — L(D3))

L <y, Acrg for any CFL L (using a mapping assigning to any string w the string (G, w),
where G is a CFG that generates L)

EQpra <m Epra (using a mapping assigning to any (D, D), where D; and Dy are DFAs,
the encoding of the DFA C' constructed so that its language is the symmetric difference of
L(D;) and L(D))3

3The approach used in the lecture handout, which uses two “calls” to a SUBpra decider, is not based on a mapping
reduction; it is, however, an example of a reduction from the problem of testing membership in FQppa to the problem
of testing membership in Epra in the broader sense discussed earlier.

12

Undecidability of Ery Revisited

Theorem. FE1y is undecidable.

Proof. We create a mapping reduction by essentially imitating what we did in the earlier proof. But
this time we give the description of a transducer TM that transforms any Aty problem instance
(M, w) to its corresponding Ery problem instance (M'):

F = “On input (M, w) where M is a TM and w is a string:
1. Construct (M'), where M' is the following TM:
M' = “On input z:
1. Run M on w.
2. If M accepts, accept; if M rejects, reject.”
2. Output (M').”

However, recall from the earlier proof that

e L(M') is non-empty iff M accepts w, so

o (M"Y & Ery iff (M, w) € Ay, SO

e this transformation is not a mapping reduction from Aty to Eru.
However, it is a mapping reduction from ATy to Ery since (M') € Bry iff (M, w) € Ay
Therefore:

o Ary <m Ery, s0

e Epy is undecidable since Apy is (by part 4 of the theorem on reducibility implications), so

e Eryp is undecidable since the complement of a undecidable language is undecidable (which
follows from the fact that the complement of a decidable language is decidable).

If we had not simply cited the theorem on reducibility implications we could have gone through
a few additional steps to obtain a self-contained proof by contradiction that Ery is undecidable
since ATy is undecidable. Here is a diagram that essentially illustrates that full argument:

ATy Decider

M M L .
(M, w) Construct (M") (M) Ery Decider accept/reject

13

Undecidability of REGULART\

The decision problem: Given TM M, is the language recognized by M reqular?
The language: REGULARy = {{(M) | M is a TM and L(M) is regular}

Theorem. REGULARy is undecidable.

Proof. We show that Aty <y REGULARTy and the result follows immediately from part 4 of
the theorem on reducibility implications since Aty is undecidable.

Here is the description of a transducer TM that transforms any Ary problem instance (M, w) to
its corresponding REGULA Ry problem instance (M').

F = “On input (M, w), where M is a TM and w is a string:
1. Construct (M'), where M’ is the following TM:
M' = “On input z:
1. If = has the form 0™1™ for some n > 0 accept.
2. Run M on input w.
3. If M accepts, accept; if M rejects, reject.”
2. Output (M').”

What is L(M')?
e In its stage 1, it always accepts any string in {0"1" | n > 0}.
e In addition, whenever M accepts w it accepts all other strings in its stage 2.
e Thus

L(M') = the regular language X* if (M,w) € Ay
| the non-regular language {0™1" | n > 0} if (M, w) & Arm.

Therefore M' € REGULARy\ iff (M,w) € Ary, proving that Aty <m REGULART\. Since
A7y is undecidable, REGULA RT\ must also be undecidable.

Here is a diagram that summarizes the full argument by contradiction proving that REGULARTu
is undecidable since Ay is undecidable:

ATy Decider

(M, w) (M) REGULARTMm accept/feject

Construct (M")

Decider

14

Undecidability of EQry

The decision problem: Given two TMs My and M, are they equivalent?
The language: EQmy = {(M1, M2) | My and My are TMs and L(M;) = L(M2)}

Theorem. E(Q 1) is undecidable.

Proof. We show that Ety < EQy and the result follows immediately from part 4 of the theorem
on reducibility implications since Ety; is undecidable.

Here is the description of a transducer TM that transforms any Ery problem instance (M) to its
corresponding EQ 1y problem instance (M7, My).

F = “On input (M), where M is a TM:
1. Construct (M, Ms), where Mg is the following TM:
Mg = “On input z:
1. reject.”

2. Output (M, Mg).”
Mg is just a trivial TM that rejects all inputs.
Clearly:
e (M) € Epy iff L(M) = ® = L(Ms).
e Therefore (M) € Ery iff (M, Ms) € EQry-
e Thus Ery <m EQry-

e Therefore EQ 1y is undecidable since Etyy is.

Here is a diagram that summarizes the full argument by contradiction proving that EQ,y; is
undecidable since Ery i1s undecidable.

Ery Decider

(M) Combine (M, Ms) accept/(eject

EQ 1\ Decider

with <M<p>

15

Every Turing-Recognizable Language Reduces to HALT 1y

Recall that HALT v = {(M,w) | M is a TM and M halts on input w}

The proof we gave earlier for the undecidability of HA LT\ was not based on a mapping reduc-
tion. Now we prove the following theorem, from which it follows immediately that HALT 1y is
undecidable by choosing for L any undecidable Turing-recognizable language.

Theorem. Let L be any Turing-recognizable language. Then L <., HALT 1.

Proof. Let M be a recognizer for L. Here is the description of a transducer TM that transforms
any string w in L to a string in HALT \:

F = “On input w:
1. Construct (M', w), where M' is the following TM:
M' = “On input z:

1. Run M on input x.
2. If M accepts, accept; if M rejects, loop forever.”
2. Output (M',w).”

Observe that:
o IfweL:

— M accepts w, so
— M’ halts and accepts w, so
- (M’,w) € HALT 1.

o Ifwé¢L:

— M does not accept w (either by rejecting or looping), so
— M’ loops on w, so
— (M',w) ¢ HALT 1\

Therefore L <, HALT 1.

16

A Non-Turing-Recognizable,
Non-Co-Turing-Recognizable Language

Recall that EQTM = {(Ml, Mg) | M1 and M2 are TMs and L(Ml) = L(MQ)}

Theorem. EQ,, is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We break this into two parts, first proving that EQy; is not Turing-recognizable, then
proving that its complement is not Turing-recognizable.

Lemma 1. EQr); is not Turing-recognizable.

Proof. We show that Aty < EQpy- Since Aty is not Turing-recognizable, it will then follow
from part 3 of the theorem on reducibility implications that EQy; is not Turing-recognizable.

Consider this transducer TM mapping A1y problem instances (M, w) to EQry; problem instances,
which have the form (M7, Mb):

F = “On input (M, w) where M is a TM and w is a string:
0. If the input is not a valid encoding (M, w), output (T, T),
where T is any convenient TM (e.g., Mg, defined below).
1. Construct (M', Mg), where M’ and Mg are the following TMs:
M' = “On input z:

1. Run M on input w.

2. If M accepts, accept; if M rejects, reject.”
Mg = “On input z:

1. reject.”

2. Output (M', Ms).”
Note:

e For completeness we have included a stage 0 just to handle the case when the input string
is not a valid encoding of any TM/string combination. Generally, even when such a stage is
necessary it is ignored in other TM descriptions, with the tacit understanding that there is a
simple way to deal with invalid input strings like this without spelling it out explicitly.

e In this case, the mapping needs to produce a string that belongs to EQry-

e If the input is in Ay because it fails to be a valid encoding of any (M, w), then stage 0
guarantees that the corresponding output string (7, T') belongs to EQ |y, as desired.

Continuing with the proof, we first examine L(M'). Clearly,

N[= i (M,w) e A
200 ={ & (o) ¢ Ao

17

A Non-Turing-Recognizable,

Non-Co-Turing-Recognizable Language

(Continued)

Thus (restricting attention to valid encodings (M, w)) we see that

and

(M,w)Em = (M,w)¢ATM
= L(M') =& = L(Ms)
= <M',M<p> € EQmy

<M7w)¢m = <M,UJ)EATM
= L(M')=3X*#®=L(Ms)
= (M',Ms) ¢ EQry-

Therefore, in all cases, the input string to the TM F' belongs to Aty iff the output string from
F belongs to EQmy, so F is a mapping reduction Aty <m EQry. Since Aty is not Turing-
recognizable, it follows that EQ|y; is not Turing-recognizable.

Here is a diagram that summarizes the full argument by contradiction proving that E@Qry; cannot
be Turing-recognizable since a recognizer for it could be used as a subprocedure to construct a
recognizer for Ary. (This diagram ignores the invalid-encoding case handled by stage 0).

(M, w)

ATty Recognizer

Construct
<M,’ Mq;.)

(M', M)

EQ 1\ Recognizer

accept/reject

18

A Non-Turing-Recognizable,
Non-Co-Turing-Recognizable Language
(Continued)

Lemma 2. EQy, is not Turing-recognizable.

Proof. As in the proof of Lemma 1 we could construct from scratch a mapping reduction from some
non-Turing-recognizable language (we now know of two: Aty and EQqy) to EQry- Instead we
will take advantage of mapping reductions already derived.

Recall that:

e we proved the undecidability of Ery by constructing a mapping reduction Aty < Frw;
and

e we proved the undecidability of EQ 1y, by constructing a mapping reduction Ety <m EQry-

Therefore:

e by transitivity, Arv <m EQry,

e which is equivalent to Aty <m EQTy,

e so it follows that EQxy; is not Turing-recognizable since Aty is not Turing-recognizable.

19

Summary of Mapping Reductions
Explicitly Described in This Handout

Atv <m EtMm

Arv <m REGULARTW

Erm <m EQrym

L <y HALT 1y for any Turing-recognizable language L

Arv <m EQry

20

Designing Mapping Reductions:
Two Examples

Consider the language
L={(M)|MisaTM and |L(M)| =5}.
Try to design mapping reductions
[] ATM S m L and

o Aty < L.

Need to fill in this template, where F is the TM implementing the desired mapping reduction:*

F = “On input (M, w) where M is a TM and w is a string:
1. Construct (M'), for the following TM:
M' = “On input z:

2. Output (M').”
To prove Arm <m L:
e Want (M, w) € Apy iff (M') € L.
e Equivalently, want M’ to accept exactly 5 strings exactly when M accepts w.

Can we design such an M'?

To prove Arv <m L:
e Want (M, w) € Ary iff (M') € L.
e Equivalently, want M’ to accept exactly 5 strings exactly when M does not accept w.

Can we design such an M'?

In addition, if either or both of these mapping reductions can be shown to exist, what can we
conclude about L7

4For simplicity, we ignore the invalid-input case.

21

