Multi-Tape Turing Machines

The transition function for a k-tape TM has the form

6:Q xTF — QxTF x {L,R,S}*.

Here is an informal description (partly high-level and partly implementation-level) of a 3-tape
Turing machine (transducer) A for doing binary addition. It assumes that the input (which appears
initially on tape 1) has the form w;#w9, where w; and wy are the binary numbers to be added,
with each appearing in reverse order (least significant bit first). The result appears on tape 3, also
in reverse order.

A = “On input string wy#ws:

1. Copy w» to tape 2.

2. Erase all but w; from tape 1.

3. Initialize the carry bit ¢ (recorded in the finite control) to 0.

4. Position all three tape heads at the beginning of each tape.

9. Let by = contents of current cell of tape 1 and by = contents of current cell of tape 2

(recorded in the finite control).

6. If b; and b, are not both blank:

7. Perform a full-adder operation with b1, be, and ¢, writing the sum bit to tape 3
recording the updated carry bit ¢ in the finite control, and move all three tape
heads one cell to the right.

(If either by or be is blank, treat it like 0 when performing the addition.)

8. Go to step 5.

9. If b; and by are both blank:

10. If the carry bit ¢ = 1, write 1 on tape 3.

11. Halt”



Multi-Tape TM vs. (Single-Tape) TM

The transition function for a k-tape TM has the form

6:Q xTF — QxTF x {L,R,S}*.

Theorem. For any k-tape TM there is an equivalent (single-tape) TM.

Proof. Let M be a multi-tape TM with &k tapes. Here is a high-level description of a (single-tape)
TM S that simulates the behavior of M.

S =
1

“On input string w = a1as9 . .. ay:

Format the tape as follows:
H#a102 ... anFFUHLUH ... #

Here # is used as a delimiter between the parts that represent each tape and there is also
one at the beginning and the end of the entire non-blank portion of the tape, making a total
of kK + 1 of them. A “marked” version of each tape symbol (including the blank) is used to
indicate the current position of the “virtual head” for the corresponding tape.

. Starting at the left end, scan to the right to determine all the symbols under the simulated

tape heads and record this combination in the finite control. (There may be many possible
combinations, implying a large number of states, but all that matters is that this is a finite
number.)

. Go back to the left end again and sweep to the right to update the simulated tapes according

to the transition function ¢. This includes moving the marks to indicate movement of the
virtual tape heads.

. If one of the virtual heads gets moved right onto a #, write a blank into this cell and shift

everything from here to the end of the tape one cell to the right.

If M would enter its accept state, accept; if M would enter its reject state, reject. (Or when
M is a transducer, if it would enter its halt state, halt.)

. Go to stage 2.”

Corollary.

1.

2.

A language is Turing-recognizable iff some multi-tape TM recognizes it.

A language is decidable iff some multi-tape TM decides it.



Nondeterministic TM vs. (Deterministic) TM

The transition function for a nondeterministic TM (NTM) has the form
§:Q x T — 29xIx{L.R}

An NTM accepts a string iff some branch of its computation tree leads to the accept state. (Other
branches might lead to the reject state and still others might never terminate).

Theorem. For any NTM there is an equivalent TM.

Proof. Let N be a nondeterministic TM. Here is a high-level description of a (deterministic) 3-tape
TM D that explores the computation tree of N in a breadth-first manner:

First, its use of the 3 tapes is as follows:
e Tape 1 holds the input string. Its contents are never changed.

e Tape 2 is the simulation tape, used to represent the tape contents for the particular compu-
tation branch of N currently being simulated.

e Tape 3 is the address tape, used to keep track of which branch of the N’s computation tree
is currently being simulated.

D = “On input w:
1. Copy tape 1 to tape 2.1

2. Use tape 2 to simulate N on the computation path from the root to the node represented by
the address on tape 3. This is done one step at a time by consulting the next symbol to the
right on tape 3 after each simulated transition. If, at some point during the simulation, the
address is found to be invalid or a rejecting configuration is encountered, go to stage 4.

3. If an accepting configuration is encountered, accept.

4. If all branches of the tree are exhausted, reject.

5. Replace the string on tape 3 by the lexicographically next string.
6. Go to stage 1.”

Since any 3-tape TM has an equivalent TM, the theorem follows.
Definition. An NTM is a decider if all branches halt on all inputs.
Corollary.

1. A language is Turing-recognizable iff some nondeterministic TM recognizes it.

2. A language is decidable iff some nondeterministic TM decides it.

'This should also involve copying (at least) one terminating blank since an earlier simulated branch of the com-
putation may have written to parts of this tape beyond the space originally occupied by the input string.



Nondeterministic Multi-Tape Turing Machines

We could also consider combining the use of multiple tapes with nondeterminism. The transition
function for a k-tape NTM has the form

5 QI % Fk N 2QXFkX{L,R,S}.

Theorem. For any multi-tape NTM there is an equivalent TM.

Proof. If the multitape NTM has k tapes, we use the construction of the previous proof, this time
with k£ simulation tapes instead of just one. Thus the overall deterministic machine should have
k+2 tapes, the k simulation tapes along with a tape that holds the input and is never changed plus
an address tape that keeps track of the part of the computation tree currently being simulated.
Since this (k + 2)-tape machine can itself be simulated by a single-tape TM, the result follows.

Corollary.
1. A language is Turing-recognizable iff some multi-tape nondeterministic TM recognizes it.

2. A language is decidable iff some multi-tape nondeterministic TM decides it.

This means that whenever we want to prove a language is decidable or Turing-recognizable, it is
sufficient to show how to construct a TM that uses any combination of multiple tapes or nondeter-
minism to perform the desired computation. This is useful because it may be easier to describe the
design of such a machine than it is to describe the design of an ordinary (single-tape, deterministic)
TM to do the job.



