Language Deciders vs. Language Recognizers
Every TM T partitions the set of possible input strings over its input alphabet into three sets:
e AccEPT(T) = the set of input strings for which T halts by reaching its accept state;
e REJECT(T) = the set of input strings for which 7' halts by reaching its reject state; and
e Loop(T') = the set of input strings for which 7" never halts.

For example, consider the following TM M for strings over the alphabet ¥ = {a,b}:

a,b - R

a,b = R
It is easily checked that
e ACCEPT(M) = all strings of the form aX*a UbX*b U X;

e REJECT(M) = all strings of the form a¥*b U ¢; and

e LooP(M) = all strings of the form bX*a.

Using this terminology, we can redefine recognizers and deciders as follows:

e A TM T is a recognizer for a language L if ACCEPT(T) = L.

e A TM T is a decider for a language L if ACCEPT(T) = L and Loop(T) = ®. Equivalently,
a TM T is a decider for L if AccepT(T) = L and REJECT(T) = L.

We see that the above example M is a recognizer for the language a¥*a UbX*b U X but it is not a
decider for this language.

Recall these definitions:

e A language L is Turing-recognizable if there is some TM that recognizes it.

e A language L is decidable if there is some TM that decides it.

We will show that there are languages that are: (1) Turing-recognizable but not decidable, and
(2) languages that are not even Turing-recognizable. A language in the first category has the
peculiar property that any TM that recognizes it must fail to terminate for some input strings.
A language in the second category has the even more peculiar property that there is no TM that
accepts exactly those strings belonging to that language. (By the Church-Turing thesis, this means
that there is no algorithm that is able to return with an accept result for exactly those strings
belonging to such a language.)



