Graph Connectedness (Decision) Problem

The decision problem: Give a finite undirected graph G, is it connected?
The corresponding language:
C = {(G) | G is a connected finite undirected graph} .

Counsider this TM:

Mc = “On input (G):
0 If the input string is not a valid encoding of a finite undirected graph, reject.
1 Mark the first node of G.
2. Repeat until no new nodes get marked:
3 Mark each node in G that is attached by an edge to an already marked node.
4 If all nodes are marked, accept; otherwise, reject.”

Assuming the encoding is as described earlier, here are some examples of strings that should get
rejected in stage 0:

(1,(2
(1,3:4)((1,2),(1,3),(1,4),(3,4))
(1,2)((1,2),(1,1))

Consider the input string (1,2, 3,4)((1, 2), (2, 3)).
It’s rejected in stage 4 because node 4 will not be marked.

Consider the input string (1,2, 3,4, 5)((1,2), (2, 3), (2,4)(4, 5)).
It’s accepted in stage 4 because all nodes will be marked.

Observations about the general behavior of M¢:
e At least one node gets marked each time through the loop except the last.
e There are only finitely many nodes.
e Therefore M terminates on all inputs.
e (Clearly, M accepts a string iff the graph it encodes is connected.
e Therefore M¢ is a decider for the language C.
Overall conclusion:
e Stated formally: C is a decidable language.

e Stated informally: Graph connectedness is a decidable problem.

DFA Simulator - Acceptance Problem For DFAs

The decision problem: Give a DFA D and a string w, does D accept w?
The corresponding language:

Apra = {(D,w) | D is a DFA that accepts input string w}.

Consider this TM:

Simpra = “On input (D, w), where D is a DFA and w is a string:
0. Check that this is a valid encoding of a DFA together with a string
in the corresponding input alphabet. If not, reject.
1. Simulate D on input w.
2. If the simulation ends in an accept state of D, accept; if not, reject.”

Remarks:

e Stage 0, the validity check, is usually not shown explicitly as it is here. Henceforth it will be
omitted, but it is always implicitly assumed to be present.

e Stage 1 is itself a loop that iterates once for each symbol in w, consulting the transition
function each time to determine the next state.

Observations about the general behavior of Simpra:
e The loop implicitly present in stage 1 iterates |w| times.
e Since |w| is finite, stage 1 always halts.
e Therefore Simpra terminates on all inputs.
e Clearly, Simppa accepts a string (D, w) iff the DFA D accepts the string w.
e Therefore Simpra is a decider for the language Appa.
Overall conclusion:
e Stated formally: Apga is a decidable language.

o Stated informally: The acceptance problem for DFAs is decidable.

TM Simulator - Acceptance Problem For TMs

The decision problem: Given a TM T and a string w, does T accept w?
The corresponding language:

Ary = {(T,w) | T is a TM that accepts input string w} .

Consider this TM:

Simty = “On input (T, w):
1. Simulate 7" on input w.
2. If the simulation ends in T”’s accept state, accept.

If it ends in a T"s reject state, reject.”
Remarks:

e Stage 1 is carried out iteratively by consulting the transition function to determine the next
configuration at each iteration.

e This TM has been called a universal Turing machine because it is able to simulate the behavior
of any other TM given an encoding of that TM.

Observations about the general behavior of SimTy:
o If the simulated TM T halts and accepts w, then Simry halts and accepts (T, w).
e If the simulated TM T halts and rejects w, then SimTy halts and rejects (T, w).
e If the simulated TM T fails to halt on input w, then Simry also fails to halt on input (7', w).

e Therefore Simry is a recognizer, but not a decider, for Ayg.

Does there exist a decider for Ay?

No! We'll soon see a proof that this language is undecidable.

Acceptance Problem For NFAs and Regular Expressions

Two decision problems:
1. Given NFA N and string w, does N accept w?

2. Given regular expression R and string w, does R generate w?

The corresponding languages:
1. Axpa = {(N,w) | N is an NFA that accepts input string w}

2. Agpx = {(R,w) | R is an regular expression that generates string w}

Deciders for these languages:

Mpyea = “Oninput (N, w), where N is an NFA and w is a string:
1. Convert N to an equivalent DFA D using the procedure we
learned in class (and described on pp. 55-56 of Sipser).

2. Run Simppa on (D, w).
3. If it accepts, accept; if it rejects, reject.”
Mugsx = “On input (R, w), where R is a regular expression and w is a string:

1. Convert R to an equivalent NFA N using the procedure we
learned in class (and described on pp. 67-69 of Sipser).

2. Run My, on (N,w).

3. If it accepts, accept; if it rejects, reject.”

Overall conclusion:
1. Anpa is a decidable language.

2. Agrgx is a decidable language.

Exhaustive Testing Strategy

Decision problem: Given DFA D, is there some string that D accepts?
Corresponding language:
SOMEppa = {(D) | D is a DFA and L(D) # ®}

Consider this TM:
M = “On input (D), where D is a DFA:

1. For each possible string w (enumerated, say, in lexicographic order):
2. Run Simppa on (D, w).

3. If it accepts, accept

4 If no (D, w) is accepted, reject.”

Observations:

e There are infinitely many possible strings w to try.

Therefore the loop will never terminate if the DFA accepts no strings.

Stage 4 will never run.

This TM never enters its reject state.

It either accepts or runs forever.

This TM is a recognizer, but not a decider, for SOMFEpga .

Exhaustive Testing Strategy (Continued)

Another decision problem: Is there some string of length no more than k that the DFA D accepts?
Corresponding language:
{(D,k) | D is a DFA and D accepts some string of length < k}

Consider this TM:
M' = “On input (D, k), where D is a DFA and k is a number:

1. For each possible string w of length < k (enumerated, say, in lexicographic order):
2. Run Simpra on (D, w).

3. If it accepts, accept

4. If no (D, w) is accepted, reject.”

Observations:
e There are only finitely many strings of length < k.
e Therefore this TM halts on all inputs.

o Therefore this TM is a decider for this language.

Moral:

e Exhaustive testing will generally yield only a recognizer if there are infinitely many instances
to test.

e Exhaustive testing may yield a decider if there are finitely many instances to test.

Acceptance Problem For CFGs

The decision problem: Given CFG G and string w, does G generate w?
Corresponding language:

Acrg = {(G,w) | G is a CFG that generates string w}

One possible approach: Try all derivations to see if any of them generate the given string.

Since there could be infinitely many derivations to try, the best this could yield is a recognizer for
AcFG.-

Some facts about CFGs in Chomsky normal form (see pp. 106-109 and Problem 2.26 in Sipser):

e If G is a CFG in Chomsky normal form, then any nonempty string w in its language can be
derived in exactly 2|w| — 1 steps.

e There is a procedure for converting any CFG to an equivalent CFG in Chomsky normal form.

Consider this TM:

Mpgee = “On input (G), where G is a CFG:

1. Convert G to an equivalent CFG G’ in Chomsky normal form.
2. Ifw=e:
3. If G’ contains the rule S — ¢, accept; else reject.
4. For each possible derivation consisting of 2|w| — 1 steps in G":
5. If the derivation generates w, accept.
6. If none of these derivations generate w, reject.”

Observations:

e There are only finitely many possible (2|w| — 1)-step derivations in any CFG.

Therefore stage 5 runs only finitely many times.

Therefore this TM always halts.

Therefore this TM is a decider for Acpg.

Therefore Acpg is a decidable language.

Decidability of Acpr, Implies
Decidability of any CFL

Theorem. Every CFL is decidable.

Proof. Let L be a CFL, and let G be a CFG that generates L.
Define a TM as follows:

Mg = “On input string w:

1. Run My, on (G, w).

2. If it accepts, accept; if it rejects, reject.”
Then:

e Since M4 is a decider, stage 1 halts.

e Thus Mg is a decider.

e M accepts exactly those strings that G generates, so ACCEPT(M¢) = L(G) = L.
e Therefore Mg is a decider for L.

e Therefore the CFL L is decidable.

Emptiness Problem For DFAs

Decision problem: Given DFA D, does D accept no strings at all?

Corresponding language:

Epra = {(D) | D is a DFA and L(D) = &}

Consider this TM:

Mgy, = “On input (D), where D is a DFA:
1. Mark the start state of D.
2. Repeat until no more states get marked:
3. Mark any state having a transition into it from any state already marked.
4, If no accept state is marked, accept; otherwise reject.”

Observations:

e There are only finitely many states.

Thus stage 3 runs only finitely many times.

Therefore this TM always halts.

Therefore it’s a decider for Eppa.

Therefore Epra is a decidable language.

Emptiness Problem For CFGs

Decision problem: Given CFG G, does G generate no strings at all?

Corresponding language:

Ecrc = {(G) | G is a CFG and L(G) = ®}

Consider this TM:

Mg e = “On input (G), where G is a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A for which there is a rule
A — UU; . ..U, with all symbols
U1,Us,...,U; marked.
4. If the start variable is not marked, accept; otherwise reject.”

Observations:

e There are only finitely many variables.

Thus stage 3 runs only finitely many times.

Therefore this TM always halts.

Therefore it’s a decider for Ecpg.

Therefore Ecrg is a decidable language.

10

Subset and Equivalence Problems For DFAs

Two decision problems:

1. Given two DFAs Dy and Do, is the language recognized by Dy a subset of the language
recognized by Do ?

2. Given two DFAs Dy and Dy, are they equivalent?

Corresponding languages:
1. SUBDFA = {(Dl,Dg) | D1 and D2 are DFAS and L(Dl) g L(Dg)}
2. EQDFA = {<D1,D2) | D1 and D2 are DFAS and L(Dl) = L(Dg)}

Consider this TM for SUBppa:

Msyppra = “On input (D;, D3), where D and Dy are DFAs:
1. Construct a DFA C such that L(C) = L(D;) — L(Dy).
2. Run Mg, on (C).
3. If it accepts, accept; if it rejects, reject.”

Observations on MsyBpps:

e (D) — L(Dy) = L(D1) N L(D3), so stage 1 involves combining the intersection and comple-
ment constructions for DFAs from p. 46 and Exercise 1.14, respectively, of Sipser.

Thus stage 1 always terminates since it requires finitely many steps.

Stage 2 always terminates since Mg, is a decider.
e For any sets A and B,

o A — B consists of all elements of A that do not belong to B; so
o A — B is empty iff every element of A belongs to B; so
o A— Bisempty iff A C B.

e Therefore this TM accepts (D1, D) iff L(D1) C L(Dy).
e Therefore this TM is a decider for SUBppa.

Since L(D;) = L(D3) if and only if L(D;) C L(D2) and L(D3) C L(D;), we can use Msypyp, t0
construct the following decider for EQppa:

Mgg,., = “Oninput (D1, Ds), where Dy and Dy are DFAs:
1. Run Msyp,, ., on (D1, Ds). If it rejects, reject.
2. Run Msyp, ., on (Da, Dy). If it accepts, accept; otherwise reject.”

Therefore:
1. SUBppa is a decidable language.
2. EQppa is a decidable language.

11

