
How to Prove Undecidability or
Non-Turing-Recognizability in This Course

To prove that a given language is undecidable:

• Construct a (mapping) reduction from another language already known to be undecidable to
the given language.

• This known undecidable language can be any language for which undecidability has been
proved in the textbook, in lectures, in class handouts, or in homework problems (but you
should cite the appropriate reference).

• How do you decide which existing language to use to reduce to the given language? You may
be given a hint (or told outright), or you may be expected to figure it out for yourself. An
obvious choice to consider is ATM or its complement.

• Prove that your reduction has the desired properties (i.e., that it truly is a reduction from
that undecidable language to the given language).

To prove that a given language is non-Turing-recognizable:

Either do both of these:

• Prove that its complement is Turing-recognizable.

• Prove that its complement is undecidable.

Or:

• Construct a (mapping) reduction from another language already known to be non-Turing-
recognizable to the given language.

• This known non-Turing-recognizable language can be any language for which non-Turing-
recognizability has been proved in the textbook, in lectures, in class handouts, or in homework
problems (but you should cite the appropriate reference).

• How do you decide which existing language to use to reduce to the given language? You may
be given a hint (or told outright), or you may be expected to figure it out for yourself. An
obvious choice to consider is ATM.

• Prove that your reduction has the desired properties (i.e., that it truly is a reduction from
that non-Turing-recognizable language to the given language).

1


