
1

© 2004, Ronald J. Williams

Reinforcement Learning
and Markov Decision

Processes
Ronald J. Williams

CSG220, Spring 2007

Contains a few slides adapted from two related Andrew Moore
tutorials found at http://www.cs.cmu.edu/~awm/tutorials

© 2004, Ronald J. Williams Reinforcement Learning: Slide 2

What is reinforcement learning?
Key Features:
• Agent interacts continually with its environment
• Agent has access to performance measure, not

told how it should behave
“That was a 3.5”

• Performance measure depends on sequence of
actions chosen
“Hmm, I wonder where I went wrong ...”
• Temporal credit assignment problem

• Not everything known to the agent in advance
=> learning required

2

© 2004, Ronald J. Williams Reinforcement Learning: Slide 3

What is reinforcement learning?
• Tasks having these properties have come to

be called reinforcement learning tasks

• A reinforcement learning agent is one that
improves its performance over time in such
tasks

© 2004, Ronald J. Williams Reinforcement Learning: Slide 4

Historical background
• Original motivation: animal learning
• Early emphasis: neural net implementations and

heuristic properties
• Now appreciated that it has close ties with

• operations research
• optimal control theory
• dynamic programming
• AI state-space search

• Best formalized as a set of techniques to handle
Markov Decision Processes (MDPs) or Partially
Observable Markov Decision Processes (POMDPs)

3

© 2004, Ronald J. Williams Reinforcement Learning: Slide 5

a(0) a(1) a(2)
s(0) s(1) s(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where 0 ≤ γ ≤ 1.

Reinforcement learning task

Agent

Environment
State Reward Action

γ = discount factor

© 2004, Ronald J. Williams Reinforcement Learning: Slide 6

Markov Decision Process (MDP)
• Finite set of states S
• Finite set of actions A *
• Immediate reward function

• Transition (next-state) function

• More generally, R and T are treated as stochastic
• We’ll stick to the above notation for simplicity
• In general case, treat the immediate rewards and next

states as random variables, take expectations, etc.
* The theory easily allows for the possibility that there are different sets of actions

available at each state. For simplicity we use one set for all states.

Reals: →× ASR

SAST →×:

4

© 2004, Ronald J. Williams Reinforcement Learning: Slide 7

Markov Decision Process
• If no rewards and only one action, this is

just a Markov chain
• Sometimes also called a Controlled Markov

Chain
• Overall objective is to determine a policy

such that some measure of cumulative
reward is optimized

AS →:π

© 2004, Ronald J. Williams Reinforcement Learning: Slide 8

What’s a policy?

a3s4

a1s3

a7s2

a3s1

Then a good action isIf agent is in this state

.

Note: To be more precise, this is called a stationary policy because it depends only
on the state. The policy might depend, say, on the time step as well. Such
policies are sometimes useful; they’re called nonstationary policies.

5

© 2004, Ronald J. Williams Reinforcement Learning: Slide 9

A Markov Decision Process
You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Here the reward
shown inside any
state represents the
reward received upon
entering that state.

Illustrates that
the next-state
function really
determines a
probability
distribution over
successor states
in the general
case.

© 2004, Ronald J. Williams Reinforcement Learning: Slide 10

Another MDP

S

G

Reward = -1 at every step γ = 1

G is an absorbing state, terminating any single trial, with a reward of 100

Effect of actions is deterministic

4 actions

47 states

6

© 2004, Ronald J. Williams Reinforcement Learning: Slide 11

Applications of MDPs
Many important problems are MDPs….

… Robot path planning
… Travel route planning
… Elevator scheduling
… Bank customer retention
… Autonomous aircraft navigation
… Manufacturing processes
… Network switching & routing

And many of these have been successfully handled
using RL methods

© 2004, Ronald J. Williams Reinforcement Learning: Slide 12

From a situated agent’s perspective
• At time step t

• Observe that I’m in state s(t)
• Select my action a(t)
• Observe resulting immediate reward r(t)

• Now time step is t+1
• Observe that I’m in state s(t+1)
• etc.

7

© 2004, Ronald J. Williams Reinforcement Learning: Slide 13

Value Functions
• It turns out that

• RL theory
• MDP theory
• AI game-tree search

all agree on the idea that evaluating states is
a useful thing to do.

• A (state) value function V is any function
mapping states to real numbers:

Reals: →SV

© 2004, Ronald J. Williams Reinforcement Learning: Slide 14

A special value function: the return
• For any policy , define the return to be the

function assigning to each state
the quantity

where
• s(0) = s
• each action a(t) is chosen according to
• each subsequent s(t+1) arises from the transition

function T
• each immediate reward r(t) is determined by the

immediate reward function R
• is a given discount factor in [0, 1]

π

∑
∞

=

=
0

)()(
t

t trsV γπ Reminder: Use expected
values in the
stochastic case.

Reals: →SV π

γ

π

8

© 2004, Ronald J. Williams Reinforcement Learning: Slide 15

Technical remarks
• If the next state and/or immediate reward

functions are stochastic, then the r(t) values
are random variables and the return is
defined as the expectation of this sum

• If the MDP has absorbing states, the sum
may actually be finite
• We stick with this infinite sum notation for the

sake of generality
• The discount factor can be taken to be 1 in

absorbing-state MDPs
• The formulation we use is called infinite-horizon

© 2004, Ronald J. Williams Reinforcement Learning: Slide 16

Why the discount factor?
• Models idea that future rewards are not

worth quite as much the longer into the
future they’re received
• used in economic models

• Also models situations where there is a
nonzero fixed probability 1-γ of termination
at any time

• Makes the math work out nicely
• with bounded rewards, sum guaranteed to be

finite even in infinite-horizon case

9

© 2004, Ronald J. Williams Reinforcement Learning: Slide 17

What’s a value function?

6s4

22.6s3

-1s2

13s1

Return when following
given policy should be

If agent starts in this state

.

Note: It is common to treat any value function as an estimate of
the return from some policy since that’s what’s usually desired.

© 2004, Ronald J. Williams Reinforcement Learning: Slide 18

Optimal Policies
• Objective: Find a policy such that

for any policy and any state s.
• Such a policy is called an optimal policy.
• Define

*π

π

)()(
*

sVsV ππ ≥

** πVV = optimal return or

optimal value function

10

© 2004, Ronald J. Williams Reinforcement Learning: Slide 19

Interesting fact
For every MDP there exists an optimal policy.

It’s a policy such that for every possible start
state there is no better option than to follow
the policy.

Can you see why this is true?

© 2004, Ronald J. Williams Reinforcement Learning: Slide 20

Finding an Optimal Policy
Idea One:

Run through all possible policies.
Select the best.

What’s the problem ??

11

© 2004, Ronald J. Williams Reinforcement Learning: Slide 21

Finding an Optimal Policy
• Dynamic Programming approach:

• Determine the optimal return (optimal value
function) for each state

• Select actions “greedily” according to this
optimal value function V*

• How do we compute V*?
• Magic words: Bellman equation(s)

© 2004, Ronald J. Williams Reinforcement Learning: Slide 22

Bellman equations
For any state s and policy

For any state s,

Extremely important and useful
recurrence relations
Can be used to compute the return from a given policy or
to compute the optimal return via value iteration

)))(,(())(,()(ssTVssRsV πγπ ππ +=

π

))},((),({max)(** asTVasRsV
a

γ+=

12

© 2004, Ronald J. Williams Reinforcement Learning: Slide 23

Quick and dirty derivation
of the Bellman equation

Given the state transition s s’,

)()0(

)1()0(

)()(

0

0

sVr

trr

trsV

t

t

t

t

′+=

++=

=

∑

∑
∞

=

∞

=

π

π

γ

γγ

γ

© 2004, Ronald J. Williams Reinforcement Learning: Slide 24

Bellman equations: general form
For completeness, here are the Bellman equations

for stochastic MDPs:

where now represents and

probability that the next state is s’ given
that action a is taken in state s.

)())(())(,()(sVsPssRsV
s

ss ′+= ∑
′

′
ππ πγπ

)}()(),({max)(** sVaPasRsV
s

ssa
′+= ∑

′
′γ

=′)(aPss

),(asR),|(asrE

13

© 2004, Ronald J. Williams Reinforcement Learning: Slide 25

From values to policies
• Given any function , define a

policy to be greedy for V if, for all s,

• The right-hand side can be viewed as a
1-step lookahead estimate of the return
from based on the estimated return from
successor states

π
))},((),({maxarg)(asTVasRs

a
γπ +=

π
Yet another reminder: In the general

case, this is a shorthand for the
appropriate expectations as spelled
out in detail on the previous slide.

Reals: →SV

© 2004, Ronald J. Williams Reinforcement Learning: Slide 26

Facts about greedy policies
• An optimal policy is greedy for

• Follows from Bellman equation

• If is not optimal then a greedy policy for
will yield a larger return than

• Not hard to prove
• Basis for another DP approach to finding optimal

policies: policy iteration

*V

π
ππV

14

© 2004, Ronald J. Williams Reinforcement Learning: Slide 27

Finding an optimal policy
Value Iteration Method
Choose any initial state value function V0

Repeat for all n ≥ 0
For all s

Until convergence

This converges to and any greedy policy with respect to it
will be an optimal policy

Just a technique for solving the Bellman equations for
(system of |S| nonlinear equations in |S| unknowns)

*V

))},((),({max)(1 asTnVasRasnV γ+←
+

*V

© 2004, Ronald J. Williams Reinforcement Learning: Slide 28

Finding an optimal policy
Policy Iteration Method
Choose any initial policy
Repeat for all n ≥ 0

Compute
Choose greedy with respect to

Until

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1

15

© 2004, Ronald J. Williams Reinforcement Learning: Slide 29

Finding an optimal policy
Policy Iteration Method
Choose any initial policy
Repeat for all n ≥ 0

Compute
Choose greedy with respect to

Until

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1

Policy Evaluation Step

Policy Improvement Step

© 2004, Ronald J. Williams Reinforcement Learning: Slide 30

Evaluating a given policy
• There are at least 2 distinct ways of

computing the return for a given policy
• Solve the corresponding system of linear

equations (the Bellman equation for)
• Use an iterative method analogous to value

iteration but with the update

• First way makes sense from an offline
computational point of view

• Second way relates to online RL

π

πV

)))(,(())(,()(1 ssTnVssRsnV πγπ +←
+

16

© 2004, Ronald J. Williams Reinforcement Learning: Slide 31

Deterministic MDP to Solve

3 actions at each state:

a1, a2, a3

Numbers on arcs denote
immediate reward
received

3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Find optimal policy when γ = 0.9

© 2004, Ronald J. Williams Reinforcement Learning: Slide 32

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

17

© 2004, Ronald J. Williams Reinforcement Learning: Slide 33

Value Iteration
3

2
2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

Computing a new value for s1
using 1-step lookahead with
previous values:

For action a1 lookahead value is
2 + (.9)(0) = 2

For action a2 lookahead value is
3 + (.9)(0) = 3

For action a3 lookahead value is
2 + (.9)(0) = 2

3}2,3,2max{)(11 ==sV

232

a3a2a1

© 2004, Ronald J. Williams Reinforcement Learning: Slide 34

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

4242s4

3131s3

4412s2

3232s1

maxa3a2a1

Lookahead value
along action

18

© 2004, Ronald J. Williams Reinforcement Learning: Slide 35

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

New value function V1 after one step of value iteration

3 4

3 4

4)(
3)(
4)(
3)(

41

31

21

11

=
=
=
=

sV
sV
sV
sV

Updated
approximation
to V*:

© 2004, Ronald J. Williams Reinforcement Learning: Slide 36

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Keep doing this until it converges to V*

34.7 35.3

34.7 35.3

14.813.914.813.9V5

35.334.735.334.7V*

12.111.912.111.9V4

9.99.09.99.0V3

6.76.66.76.6V2

4343V1

0000V0

s4s3s2s1

. . .

19

© 2004, Ronald J. Williams Reinforcement Learning: Slide 37

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

V*

34.7 35.3

34.7 35.3
a233.835.233.8s4

a232.834.832.2s3

a335.232.233.2s2

a233.234.833.8s1

besta3a2a1

Lookahead value
along action

Determining a greedy
policy for V*

© 2004, Ronald J. Williams Reinforcement Learning: Slide 38

Value Iteration
3

4

3

4

s1 s2

s3 s4

Optimal policy

20

© 2004, Ronald J. Williams Reinforcement Learning: Slide 39

Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy π

© 2004, Ronald J. Williams Reinforcement Learning: Slide 40

Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π

Compute its return:

21

© 2004, Ronald J. Williams Reinforcement Learning: Slide 41

Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π
Really just solving a system

of linear equations

Compute its return:

© 2004, Ronald J. Williams Reinforcement Learning: Slide 42

Policy Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

15.3 17.7

14.7 20

a320.017.217.9s4

a319.018.914.8s3

a317.814.215.8s2

a115.218.920.0s1

besta3a2a1

Lookahead value
along action

Determining a greedy
policy for πV

22

© 2004, Ronald J. Williams Reinforcement Learning: Slide 43

Policy Iteration

4

2

1 2

s1 s2

s3 s4

New policy after one step of policy iteration

© 2004, Ronald J. Williams Reinforcement Learning: Slide 44

Policy Iteration vs. Value Iteration:
Which is better?

It depends.
Lots of actions? Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:
Modified Policy Iteration [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

23

© 2004, Ronald J. Williams Reinforcement Learning: Slide 45

Maze Task

S

G

Reward = -1 at every step γ = 1

G is an absorbing state, terminating any single trial, with a reward of 100

Effect of actions is deterministic

4 actions

© 2004, Ronald J. Williams Reinforcement Learning: Slide 46

Maze Task

959493929190898887

9695949291908988

9796959493928887

989493 92918786

99939291908685

10092919089888786

V* What’s an optimal
path from S to G?

S

G

24

© 2004, Ronald J. Williams Reinforcement Learning: Slide 47

Maze Task

959493929190898887

9695949291908988

9796959493928887

989493 92918786

99939291908685

10092919089888786

V*

S

G

© 2004, Ronald J. Williams Reinforcement Learning: Slide 48

Another Maze Task

S

G

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the
right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

Now what’s an
optimal path
from S to G?

25

© 2004, Ronald J. Williams Reinforcement Learning: Slide 49

Another Maze Task

94.8193.9793.0892.1791.1790.2181.7881.7381.44

95.9094.9893.9891.6190.6681.882.8982.39

97.0095.9994.8993.7092.6191.4484.9583.33

98.0093.8892.8791.8590.8385.0384.25

99.0092.7891.8790.8789.9386.1385.15

10091.6990.8689.9689.0588.1487.1486.04

With probability 0.2, a small wind gust might displace the agent one cell to the right or left
of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

S

G

V*

© 2004, Ronald J. Williams Reinforcement Learning: Slide 50

State-action values (Q-values)
• Note that in this example it’s misleading to

consider optimal path – especially since
randomness may knock the agent off it at any
time

• To use these state values to choose actions, need
to consult transition function T for each action at
the current state, then choose the one giving the
best expected cumulative reward

• Alternative approach: For this example, at each
state keep track of 4 numbers, not just 1,
corresponding to each possible action – best action
is the one with the highest such state-action value

26

© 2004, Ronald J. Williams Reinforcement Learning: Slide 51

Q-Values
• For any policy , define

by

where the initial state s(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and
rewards arise from the transition, policy, and
reward functions, respectively.

• Just like except that action a is taken as the
very first step and only after this is policy
followed

• Bellman equations can be rewritten in terms of
Q-values

π

∑
∞

=

=
0

)(),(
t

t trasQ γπ

Reals: →× ASQπ

πV
π

Once again, the correct expression
for a general MDP should use
expected values here

© 2004, Ronald J. Williams Reinforcement Learning: Slide 52

Q-Values (cont.)
• Define , where is an optimal policy.
• There is a corresponding Bellman equation for

since

• Given any state-action value function Q, define a
policy to be greedy for Q if

for all s.
• An optimal policy is greedy for
• Ultimately just a convenient reformulation of the

Bellman equation

** πQQ = *π
*Q

),(max)(** asQsV a=

π
),(maxarg)(asQs a=π

*Q

Why it’s convenient will become apparent
once we start discussing learning

27

© 2004, Ronald J. Williams Reinforcement Learning: Slide 53

What are Q-values?

10a2s2

17.1a1s2

3a2s1

-5a1s1

Return should
be

And starts with this
action and then
follows the policy

If agent is in this
state

.

© 2004, Ronald J. Williams Reinforcement Learning: Slide 54

Where’s the learning?
• So far, just looking at how to solve MDPs

and how such solutions lead to optimal
choices of action

• Before getting to learning, let’s take a peek
beyond MDPs: POMDPs

• More realistic but much harder to solve

28

© 2004, Ronald J. Williams Reinforcement Learning: Slide 55

a(0) a(1) a(2)
o(0) o(1) o(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where 0 ≤ γ ≤ 1.

More General RL Task

γ = discount factor

Agent

Environment
Observation Reward Action

© 2004, Ronald J. Williams Reinforcement Learning: Slide 56

Partially Observable Markov Decision Process
• Set of states S
• Set of observations O
• Set of actions A
• Immediate reward function

• Transition (next-state) function

• Observation function

• More generally, R ,T , and B are stochastic

Reals: →× ASR

SAST →×:

OSB →:

29

© 2004, Ronald J. Williams Reinforcement Learning: Slide 57

POMDP (cont.)
• Ideally, want a policy mapping all possible

histories to a choice of actions that
optimizes the cumulative reward measure

• In practice, settle for policies that choose
actions based on some amount of memory
of past actions and observations

• Special case: reactive policies
• Map most recent observation to a choice of

action
• Also called memoryless policies

© 2004, Ronald J. Williams Reinforcement Learning: Slide 58

What’s a reactive policy?

a3o4

a1o3

a7o2

a3o1

Then a good action isIf agent observes this

.

30

© 2004, Ronald J. Williams Reinforcement Learning: Slide 59

Maze Task with Perceptual Aliasing

001100100010011000100010001000101010

00010000100000010000010000001000

00010010000000100000100000011000

1001000100000000100000011000

1001000100000000100000011000

11010101010001000100011001001100

Can sense if there is a wall immediately to east, north, south, or west

Represented as a corresponding 4-bit string

Only 12 distinct possible observations

G

S

Turns this maze task
into a POMDP

© 2004, Ronald J. Williams Reinforcement Learning: Slide 60

POMDP Theory
• In principle, can convert any POMDP into an

MDP with states = belief states
• Belief state is a function: S -> Reals

assigning to any s the probability that
actual state is s

• Drawback: Even if underlying state space is
finite (say, n states), space of belief states is
an (n-1)-dimensional simplex. Solving this
continuous-state MDP is much too hard.

31

© 2004, Ronald J. Williams Reinforcement Learning: Slide 61

Practical approaches to POMDPs
• Use certain MDP methods, treating observations

like states, and hope for the best
• Try to determine how much past history to store

to represent actual states, then treat as an MDP
(involves inference of hidden state, as in hidden
Markov models)
• history window
• finite-state memory
• recurrent neural nets

• Do direct policy search in a restricted set of
policies (e.g., reactive policies) Revisit this briefly later

© 2004, Ronald J. Williams Reinforcement Learning: Slide 62

• Now back to the observable state case ...

32

© 2004, Ronald J. Williams Reinforcement Learning: Slide 63

AI state space planning
• Traditionally, true world model available a priori
• Consider all possible sequences of actions starting

from current state up to some horizon – forms a
tree

• Evaluate the states reached at the leaves
• Find the best, and choose the first action in that

sequence
• How should non-terminal states be evaluated?

• V* would be ideal
• But then only 1 step of lookahead would be necessary

• Usual perspective: use depth of search to make up
for imperfections in state evaluation

• In control engineering, called receding horizon
controller

© 2004, Ronald J. Williams Reinforcement Learning: Slide 64

Once again, where’s the learning?
• Patience – we’re almost there

33

© 2004, Ronald J. Williams Reinforcement Learning: Slide 65

Backups
• Term used in the RL literature for any

updating of V(s) by replacing it by

where a is some action, which also includes
the possibility of replacing it by

• Closely related to notion of backing up
values in a game tree

)),((),(asTVasR γ+

))},((),({max asTVasRa γ+

© 2004, Ronald J. Williams Reinforcement Learning: Slide 66

Backups
• Term used in the RL literature for any

updating of V(s) by replacing it by

where a is some action, which also includes
the possibility of replacing it by

• Closely related to notion of backing up
values in a game tree

)),((),(asTVasR γ+

))},((),({max asTVasRa γ+

Sometimes call
this a backup
along action a

Sometimes call
this a max-
backup

34

© 2004, Ronald J. Williams Reinforcement Learning: Slide 67

Backups
• The operation of backing up values is one of

the primary links between MDP theory and
RL methods

• Some key facts making these classical MDP
algorithms relevant to online learning
• value iteration consists solely of (max-)backup

operations
• policy evaluation step in policy iteration can be

performed solely with backup operations (along
the policy)

• backups modify the value at a state solely based
on the values at successor states

© 2004, Ronald J. Williams Reinforcement Learning: Slide 68

Synchronous vs. asynchronous
• The value iteration and policy iteration algorithms

demonstrated here use synchronous backups, but
asynchronous backups (implementable by
“updating in place”) can also be shown to work

• Value iteration and policy iteration can be seen as
two ends of a spectrum

• Many ways of interleaving backup steps and policy
improvement steps can be shown to work, but not
all (Williams & Baird, 1993)

35

© 2004, Ronald J. Williams Reinforcement Learning: Slide 69

Generalized Policy Iteration
• GPI coined to apply to the wide range of RL

algorithms that combine simultaneous
updating of values and policies in intuitively
reasonable ways

• It is known that not every possible GPI
algorithm converges to an optimal policy

• However, only known counterexamples are
contrived

• Remains an open question whether some of
the ones found successful in practice are
mathematically guaranteed to work

© 2004, Ronald J. Williams Reinforcement Learning: Slide 70

Generalized Policy Iteration

10a1s4

17.1a4s3

3a3s2

-5a7s1

Estimated optimal
return

Estimated best actionIf agent is in this state

.

36

© 2004, Ronald J. Williams Reinforcement Learning: Slide 71

Learning – Finally!
• Almost everything we’ve discussed so far is

“classical” MDP (or POMDP) theory
• Transition, reward functions known a priori
• Issue is purely one of (off-line) planning

• Four ways RL theory goes beyond this
• Assume transition and/or reward functions not known a

priori – must be discovered through environmental
interactions

• Try to address tasks for which classical approach is
intractable

• Take seriously the idea that policy and/or values not
represented simply using table lookup

• Even when T and R are known, only do a kind of online
planning in parts of state space actually experienced

© 2004, Ronald J. Williams Reinforcement Learning: Slide 72

Internal components of a RL agent

Action
Selector

state action

Evaluator
state

action

(optional)

value

If present, trained using
actual experiences in the
world

World
Model

state

action

predicted next state

predicted reward

(optional)

If present, trained using
temporal difference methods

Also called critic

Always present, may incorporate
some exploratory behavior

Also called controller or actor

37

© 2004, Ronald J. Williams Reinforcement Learning: Slide 73

Unknown transition and/or
reward functions

• One possibility: Learn the MDP through
exploration, then solve it (plan) using offline
methods: learn-then-plan approach

• Another way: Never represent anything about the
MDP itself, just try to learn the values directly:
model-free approach

• Yet another possibility: Interleave learning of the
MDP with planning – every time the model
changes, re-plan as if current model is correct:
certainty-equivalence planning

• Many approaches to RL can be viewed as trying to
blend learning and planning more seamlessly

© 2004, Ronald J. Williams Reinforcement Learning: Slide 74

What about directly learning a policy?
• One possibility: Use supervised learning

• Where do training examples come from?
• Need prior expertise
• What if set of actions is different in different states?

(e.g. games) may be difficult to represent the policy
• Another possibility: generate and test

• Search the space of policies, evaluating many
candidates

• Genetic algorithms, genetic programming, e.g.
• Policy-gradient techniques

• Upside:
• can work even in POMDPs

• Downside:
• the space of policies may be way too big
• evaluating each one individually may be too time-consuming

38

© 2004, Ronald J. Williams Reinforcement Learning: Slide 75

Direct policy search
• Model-free and

value-free
• Can be used for

POMDPs as well
• Requires that action

selector have a way
to explore policy
space

Action
Selector

state action

Accumulate
over time

reward

• Many possible approaches
• Genetic algorithms
• Policy gradient

© 2004, Ronald J. Williams Reinforcement Learning: Slide 76

• For the rest of this lecture, we focus solely
on RL approaches using value functions:
• Temporal difference methods
• Q-learning
• Actor/critic systems
• RL as a blend of learning and planning

39

© 2004, Ronald J. Williams Reinforcement Learning: Slide 77

Temporal
Difference
Learning

Only maintain a V array…
nothing else

So you’ve got
V (s1), V (s2), ··· V(sn)

and you observe
s r s’

what should you do?
Can You Guess ?

[Sutton 1988]

A transition from s that receives
an immediate reward of r and
jumps to s’

© 2004, Ronald J. Williams Reinforcement Learning: Slide 78

TD Learning
After making a transition from s to s’ and receiving reward r,

we nudge V(s) to be closer to the estimated return based on
the observed successor, as follows:

() ()() () ()

s1ss
α

αγα VVrV −+′+←
is called a “learning rate” parameter.

For this represents a partial backup.

Furthermore, if the rewards and/or transitions are stochastic, as in a
general MDP, this is a sample backup.

The reward and next-state values are only noisy estimates of the
corresponding expectations, which is what offline DP would use in
the appropriate computations (full backup).

Nevertheless, this converges to the return for a fixed policy (under the
right technical assumptions, including decreasing learning rate)

1 <α

40

© 2004, Ronald J. Williams Reinforcement Learning: Slide 79

TD(λ)
• Updating the value at a state based on just the

succeeding state is actually the special case TD(0)
of a parameterized family of TD methods

• TD(1) updates the value at a state based on all
succeeding states

• For 0 < λ < 1, TD(λ) updates a state’s value base
on all succeeding states, but to a lesser extent the
further into the future

• Implemented by maintaining decaying eligibility
traces at each state visited (decay rate = λ)

• Helps distribute credit for future rewards over all
earlier actions Can help mitigate effects of violation of Markov property

© 2004, Ronald J. Williams Reinforcement Learning: Slide 80

Model-free RL

Why not use TD on state values?
Observe

update
S a S’

r

() ()() () ()sVsVrsV ′−+′+← αγα 1
What’s wrong with this?

41

© 2004, Ronald J. Williams Reinforcement Learning: Slide 81

Model-free RL

Why not use TD on state values?
Observe

update
S a S’

r

() ()() () ()sVsVrsV ′−+′+← αγα 1
What’s wrong with this?

1. Still can’t choose actions without knowing what next state (or
distribution over next states) results: requires an internal model of T

2. The values learned will represent the return for the policy we’ve
followed, including any suboptimal exploratory actions we’ve taken:
not clear this will t help us act optimally

© 2004, Ronald J. Williams Reinforcement Learning: Slide 82

But ...
• Recall our earlier definition of Q-values:

42

© 2004, Ronald J. Williams Reinforcement Learning: Slide 83

Q-values
• For any policy , define

by

where the initial state s(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and
rewards arise from the transition, policy, and
reward functions, respectively.

• Just like except that action a is taken as the
very first step and only after this is policy
followed

π

∑
∞

=

=
0

)(),(
t

t trasQ γπ

Reals: →× ASQπ

πV
π

Once again, the correct expression
for a general MDP should use
expected values here

© 2004, Ronald J. Williams Reinforcement Learning: Slide 84

Q-values
• Define , where is an optimal policy.
• There is a corresponding Bellman equation for

since

• Given any state-action value function Q, define a
policy to be greedy for Q if

for all s.
• An optimal policy is greedy for

** πQQ = *π
*Q

),(max)(** asQsV a=

π
),(maxarg)(asQs a=π

*Q

43

© 2004, Ronald J. Williams Reinforcement Learning: Slide 85

Q-learning
(Watkins, 1988)
• Assume no knowledge of R or T.
• Maintain a table-lookup data structure Q

(estimates of Q*) for all state-action pairs

• When a transition s r s’ occurs, do

• Essentially implements a kind of asynchronous
Monte Carlo value iteration, using sample backups

• Guaranteed to eventually converge to Q* as long
as every state-action pair sampled infinitely often

() ()() () ()asQasQrasQ
a

,1,max, αγα −+′′+←
′

© 2004, Ronald J. Williams Reinforcement Learning: Slide 86

Q-learning
• This approach is even cleverer than it looks: the

Q values are not biased by any particular
exploration policy. It avoids the credit assignment
problem.

• The convergence proof extends to any variant in
which every Q(s,a) is updated infinitely often,
whether on-line or not.

44

© 2004, Ronald J. Williams Reinforcement Learning: Slide 87

Q-learning Agent

• Action selector trivial:
queries Q-values to find
action for current state
with highest value

• Occasionally also takes
exploratory actions

• Model-free: Does not need to know the
effects of actions

Q-value
Estimator

Action
Selector

state action

proposed
action

value

reward

© 2004, Ronald J. Williams Reinforcement Learning: Slide 88

Using Estimated Optimal Q-values

10a2s2

17.1a1s2

3a2s1

-5a1s1

Return should
be

And starts with this
action and then
follows the optimal
policy thereafter

If agent is in this
state

.

45

© 2004, Ronald J. Williams Reinforcement Learning: Slide 89

Q-Learning: Choosing Actions
• Don’t always be greedy
• Don’t always be random (otherwise it will take a long time

to reach somewhere exciting)

• Boltzmann exploration [Watkins]

Prob(choose action a)

• With some small probability, pick random action; else pick
greedy action (called ε-greedy policy)

• Optimism in the face of uncertainty [Sutton ’90, Kaelbling
’90]

Initialize Q-values optimistically high to encourage exploration
Or take into account how often each (s,a) pair has been tried

()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∝

t

as
K

,Qexp

© 2004, Ronald J. Williams Reinforcement Learning: Slide 90

Another Model-free RL Approach

• Action selector
implements a
randomized policy

• Its parameters are
adjusted based on
a reward/penalty
scheme

• No definitive theoretical analysis yet available, but
has been found to work in practice

• Represents a specific instance of generalized
policy iteration (extended to randomized policies)

State Value
Estimator

Action
Selector

state action

“heuristic
reward”

reward

“Actor/Critic” (Barto, Sutton & Anderson, 1983)

46

© 2004, Ronald J. Williams Reinforcement Learning: Slide 91

Learning or planning?
• Classical DP emphasis for optimal control

• Dynamics and reward structure known
• Off-line computation

• Traditional RL emphasis
• Dynamics and/or reward structure initially

unknown
• On-line learning

• Computation of an optimal policy off-line
with known dynamics and reward structure
can be regarded as planning

© 2004, Ronald J. Williams Reinforcement Learning: Slide 92

Primitive use of a learned model: DYNA

• In this diagram, primitive just means model-free
• Seamlessly integrates learning and planning
• World model can just be stored past transitions
• Main purpose is to improve efficiency over a model-free RL

agent without incorporating a sophisticated model-learning
component

(Sutton, 1990)

47

© 2004, Ronald J. Williams Reinforcement Learning: Slide 93

Priority DYNA

• Original DYNA used randomly selected transitions
• Efficiency improved significantly by prioritizing value

updating along transitions in parts of state space most
likely to improve performance fastest

• In goal-state tasks updating may occur in breadth-first
fashion backwards from goal, or like A* working
backwards, depending on how priority is defined

(Williams & Peng, 1993; Moore & Atkeson, 1993)

© 2004, Ronald J. Williams Reinforcement Learning: Slide 94

Beyond table lookup
• Why not table lookup?

• Too many states (even if finitely many)
• Continuous state space
• Want to be able to generalize – no hope of visiting every

state, or computing something at every state

• Alternatives
• State aggregation (e.g., quantization of continuous state

spaces)
• Generalizing function approximators

• Neural networks (including variants like radial basis functions,
tile codings)

• Nearest neighbor methods
• Decision trees

Bad news: very little theory to
predict how well or poorly
such techniques will perform

48

© 2004, Ronald J. Williams Reinforcement Learning: Slide 95

Challenges
• How do we apply these techniques to infinite (e.g.,

continuous), or even just very large, state spaces?
• Pole-balancer
• Truck backer-upper
• Mountain car (or puck-on-a-hill)
• Bioreactor
• Acrobot
• Multi-jointed snake
• Continuous mazes

• Two basic approaches for continuous state spaces
• Quantize (to obtain a finite-state approximation)

• One promising approach: adaptive partitioning
• Use function approximators (nearest-neighbor, neural

networks, radial basis functions, tile codings, etc.)

Together with finite-state mazes
of various kinds, these tasks
have become benchmark test
problems for RL techniques

© 2004, Ronald J. Williams Reinforcement Learning: Slide 96

Pole balancer

49

© 2004, Ronald J. Williams Reinforcement Learning: Slide 97

Truck backer-upper

© 2004, Ronald J. Williams Reinforcement Learning: Slide 98

Puck on a hill (or “mountain car”)

50

© 2004, Ronald J. Williams Reinforcement Learning: Slide 99

Bioreactor

inflow rate = w
contains nutrients

outflow rate = w

contains cells c1
and nutrients c2

© 2004, Ronald J. Williams Reinforcement Learning: Slide 100

Acrobot

51

© 2004, Ronald J. Williams Reinforcement Learning: Slide 101

Multi-jointed “snake”

© 2004, Ronald J. Williams Reinforcement Learning: Slide 102

Dealing with large numbers of states

S15122189

:

S2

s1

VALUESTATE

Don’t use a Table…

use…
(Generalizers) (Hierarchies)

Splines

A Function
Approximator

Variable Resolution

Multi Resolution

Memory
BasedSTATE VALUE

[Munos 1999]

52

© 2004, Ronald J. Williams Reinforcement Learning: Slide 103

Function approximation
for value functions

Polynomials [Samuel, Boyan, Much O.R.
Literature]

Neural Nets [Barto & Sutton, Tesauro,
Crites, Singh, Tsitsiklis]

Splines Economists, Controls

Downside: All convergence guarantees disappear.

Backgammon, Pole
Balancing, Elevators,
Tetris, Cell phones

Checkers, Channel
Routing, Radio Therapy

© 2004, Ronald J. Williams Reinforcement Learning: Slide 104

Memory-based Value Functions
V(s) = V (most similar state in memory to s)

or
Average of V (20 most similar states)

or
Weighted Average of V (20 most similar states)
[Jeff Peng, Atkenson & Schaal,
Geoff Gordon, proved stuff
Scheider, Boyan & Moore 98]

“Planet Mars Scheduler”

53

© 2004, Ronald J. Williams Reinforcement Learning: Slide 105

Hierarchical Methods
Continuous State Space: “Split a state when statistically

significant that a split would
improve performance”

e.g. Simmons et al 83, Chapman
& Kaelbling 92, Mark Ring 94 …,
Munos 96

with interpolation!
“Prove needs a higher
resolution”

Moore 93, Moore &
Atkeson 95

Discrete Space:
Chapman & Kaelbling 92,
McCallum 95 (includes
hidden state)

A kind of Decision
Tree Value Function

Multiresolution

A hierarchy with high level “managers” abstracting low level “servants”
Many O.R. Papers, Dayan & Sejnowski’s Feudal learning, Dietterich 1998 (MAX-Q
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Continuous Space

© 2004, Ronald J. Williams Reinforcement Learning: Slide 106

Open Issues
• Better ways to deal with very large state and/or

action spaces
• Theoretical understanding of various practical GPI

schemes
• Theoretical understanding of behavior when value

function approximators used
• More efficient ways to integrate learning of

dynamics and GPI
• Computationally tractable approaches when

Markov property violated
• Better ways to learn and take advantage of

hierarchical structure and modularity

54

© 2004, Ronald J. Williams Reinforcement Learning: Slide 107

Valuable References
• Books

• Bertsekas, D. P. & Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific

• Sutton, R. S. & Barto, A. G. (1998).
Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press

• Survey paper
• Kaelbling, L. P., Littman, M. & Moore, A. (1996).

“Reinforcement learning: a survey,” Journal of
Artificial Intelligence Research, Vol. 4, pp. 237-
285. (Available as a link off the main Andrew
Moore tutorials web page.)

© 2004, Ronald J. Williams Reinforcement Learning: Slide 108

What You Should Know
• Definition of an MDP (and a POMDP)
• How to solve an MDP

• using value iteration
• using policy iteration

• Model-free learning (TD) for predicting
delayed rewards

• How to formulate RL tasks as MDPs (or
POMDPs)

• Q-learning (including being able to work
through small simulated examples of RL)

