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What is reinforcement learning?
Key Features:
• Agent interacts continually with its environment
• Agent has access to performance measure, not 

told how it should behave
“That was a 3.5”

• Performance measure depends on sequence of 
actions chosen
“Hmm, I wonder where I went wrong ...”
• Temporal credit assignment problem

• Not everything known to the agent in advance
=> learning required
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What is reinforcement learning?
• Tasks having these properties have come to 

be called reinforcement learning tasks

• A reinforcement learning agent is one that 
improves its performance over time in such 
tasks
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Historical background
• Original motivation: animal learning
• Early emphasis: neural net implementations and 

heuristic properties
• Now appreciated that it has close ties with

• operations research
• optimal control theory
• dynamic programming
• AI state-space search

• Best formalized as a set of techniques to handle 
Markov Decision Processes (MDPs) or Partially 
Observable Markov Decision Processes (POMDPs)
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a(0) a(1) a(2)
s(0) s(1) s(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where  0 ≤ γ ≤ 1.             

Reinforcement learning task

Agent

Environment
State Reward Action

γ = discount factor

© 2004, Ronald J. Williams Reinforcement Learning: Slide 6

Markov Decision Process (MDP)
• Finite set of states S
• Finite set of actions A *
• Immediate reward function

• Transition (next-state) function

• More generally, R and T are treated as stochastic
• We’ll stick to the above notation for simplicity
• In general case, treat the immediate rewards and next 

states as random variables, take expectations, etc.
* The theory easily allows for the possibility that there are different sets of actions 

available at each state.  For simplicity we use one set for all states.

Reals: →× ASR

SAST →×:
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Markov Decision Process
• If no rewards and only one action, this is 

just a Markov chain
• Sometimes also called a Controlled Markov 

Chain
• Overall objective is to determine a policy

such that some measure of cumulative 
reward is optimized

AS →:π
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What’s a policy?

a3s4

a1s3

a7s2

a3s1

Then a good action isIf agent is in this state

. . . . . .

Note: To be more precise, this is called a stationary policy because it depends only 
on the state.  The policy might depend, say, on the time step as well.  Such 
policies are sometimes useful; they’re called nonstationary policies.
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A Markov Decision Process
You run a 
startup 
company.

In every 
state you 
must 
choose 
between 
Saving 
money or 
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Here the reward 
shown inside any 
state represents the 
reward received upon 
entering that state.

Illustrates that 
the next-state 
function really 
determines a 
probability 
distribution over 
successor states 
in the general 
case.
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Another MDP

S

G

Reward = -1 at every step                           γ = 1

G is an absorbing state, terminating any single trial, with a reward of 100

Effect of actions is deterministic

4 actions

47 states
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Applications of MDPs
Many important problems are MDPs….

… Robot path planning
… Travel route planning
… Elevator scheduling
… Bank customer retention
… Autonomous aircraft navigation
… Manufacturing processes
… Network switching & routing

And many of these have been successfully handled 
using RL methods
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From a situated agent’s perspective
• At time step t

• Observe that I’m in state s(t)
• Select my action a(t)
• Observe resulting immediate reward r(t)

• Now time step is t+1
• Observe that I’m in state s(t+1)
• etc.
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Value Functions
• It turns out that

• RL theory
• MDP theory
• AI game-tree search

all agree on the idea that evaluating states is 
a useful thing to do.

• A (state) value function V is any function 
mapping states to real numbers:

Reals: →SV
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A special value function: the return
• For any policy   , define the return to be the 

function                         assigning to each state 
the quantity

where
• s(0) = s
• each action a(t) is chosen according to 
• each subsequent s(t+1) arises from the transition 

function T
• each immediate reward r(t) is determined by the 

immediate reward function R
• is a given discount factor in [0, 1]

π

∑
∞

=

=
0

)()(
t

t trsV γπ Reminder: Use expected 
values in the 
stochastic case.

Reals: →SV π

γ

π
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Technical remarks
• If the next state and/or immediate reward 

functions are stochastic, then the r(t) values 
are random variables and the return is 
defined as the expectation of this sum

• If the MDP has absorbing states, the sum 
may actually be finite
• We stick with this infinite sum notation for the 

sake of generality
• The discount factor can be taken to be 1 in 

absorbing-state MDPs
• The formulation we use is called infinite-horizon
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Why the discount factor?
• Models idea that future rewards are not 

worth quite as much the longer into the 
future they’re received
• used in economic models

• Also models situations where there is a 
nonzero fixed probability 1-γ of termination 
at any time

• Makes the math work out nicely
• with bounded rewards, sum guaranteed to be 

finite even in infinite-horizon case
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What’s a value function?

6s4

22.6s3

-1s2

13s1

Return when following 
given policy should be

If agent starts in this state

. . . . . .

Note: It is common to treat any value function as an estimate of 
the return from some policy since that’s what’s usually desired.
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Optimal Policies
• Objective: Find a policy        such that

for any policy     and any state s.
• Such a policy is called an optimal policy.
• Define 

*π

π

)()(
*

sVsV ππ ≥

** πVV = optimal return or

optimal value function
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Interesting fact
For every MDP there exists an optimal policy.

It’s a policy such that for every possible start 
state there is no better option than to follow 
the policy.

Can you see why this is true?
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Finding an Optimal Policy
Idea One:

Run through all possible policies.
Select the best.

What’s the problem ??
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Finding an Optimal Policy
• Dynamic Programming approach:

• Determine the optimal return (optimal value 
function) for each state

• Select actions “greedily” according to this 
optimal value function V*

• How do we compute V*?
• Magic words: Bellman equation(s)
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Bellman equations
For any state s and policy

For any state s,

Extremely important and useful 
recurrence relations
Can be used to compute the return from a given policy or 
to compute the optimal return via value iteration

)))(,(())(,()( ssTVssRsV πγπ ππ +=

π

))},((),({max)( ** asTVasRsV
a

γ+=
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Quick and dirty derivation
of the Bellman equation

Given the state transition s      s’,

)()0(

)1()0(

)()(

0

0

sVr

trr

trsV

t

t

t

t

′+=

++=

=

∑

∑
∞

=

∞

=

π

π

γ

γγ

γ
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Bellman equations: general form
For completeness, here are the Bellman equations 

for stochastic MDPs:

where now represents                 and

probability that the next state is s’ given         
that action a is taken in state s.

)())(())(,()( sVsPssRsV
s

ss ′+= ∑
′

′
ππ πγπ

)}()(),({max)( ** sVaPasRsV
s

ssa
′+= ∑

′
′γ

=′ )(aPss

),( asR ),|( asrE
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From values to policies
• Given any function                    , define a 

policy    to be greedy for V if, for all s,

• The right-hand side can be viewed as a
1-step lookahead estimate of the return 
from    based on the estimated return from 
successor states

π
))},((),({maxarg)( asTVasRs

a
γπ +=

π
Yet another reminder: In the general 

case, this is a shorthand for the 
appropriate expectations as spelled 
out in detail on the previous slide.

Reals: →SV
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Facts about greedy policies
• An optimal policy is greedy for

• Follows from Bellman equation

• If    is not optimal then a greedy policy for
will yield a larger return than

• Not hard to prove
• Basis for another DP approach to finding optimal 

policies: policy iteration

*V

π
ππV
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Finding an optimal policy
Value Iteration Method
Choose any initial state value function V0

Repeat for all n ≥ 0
For all s

Until convergence

This converges to     and any greedy policy with respect to it 
will be an optimal policy

Just a technique for solving the Bellman equations for 
(system of |S| nonlinear equations in |S| unknowns)

*V

))},((),({max)(1 asTnVasRasnV γ+←
+

*V
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Finding an optimal policy
Policy Iteration Method
Choose any initial policy 
Repeat for all n ≥ 0

Compute 
Choose        greedy with respect to 

Until 

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1
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Finding an optimal policy
Policy Iteration Method
Choose any initial policy 
Repeat for all n ≥ 0

Compute 
Choose        greedy with respect to 

Until 

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1

Policy Evaluation Step

Policy Improvement Step
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Evaluating a given policy
• There are at least 2 distinct ways of 

computing the return for a given policy
• Solve the corresponding system of linear 

equations (the Bellman equation for      )
• Use an iterative method analogous to value 

iteration but with the update

• First way makes sense from an offline 
computational point of view

• Second way relates to online RL

π

πV

)))(,(())(,()(1 ssTnVssRsnV πγπ +←
+
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Deterministic MDP to Solve

3 actions at each state:

a1, a2, a3

Numbers on arcs denote 
immediate reward 
received

3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Find optimal policy when γ = 0.9
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0
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Value Iteration
3

2
2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

Computing a new value for s1 
using 1-step lookahead with 
previous values:

For action a1 lookahead value is
2 + (.9)(0) = 2

For action a2 lookahead value is
3 + (.9)(0) = 3

For action a3 lookahead value is
2 + (.9)(0) = 2

3}2,3,2max{)( 11 ==sV

232

a3a2a1
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

4242s4

3131s3

4412s2

3232s1

maxa3a2a1

Lookahead value
along action
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

New value function V1 after one step of value iteration

3 4

3 4

4)(
3)(
4)(
3)(

41

31

21

11

=
=
=
=

sV
sV
sV
sV

Updated 
approximation 
to V*:
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Keep doing this until it converges to V*

34.7 35.3

34.7 35.3

14.813.914.813.9V5

35.334.735.334.7V*

12.111.912.111.9V4

9.99.09.99.0V3

6.76.66.76.6V2

4343V1

0000V0

s4s3s2s1

.  .  .
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

V*

34.7 35.3

34.7 35.3
a233.835.233.8s4

a232.834.832.2s3

a335.232.233.2s2

a233.234.833.8s1

besta3a2a1

Lookahead value
along action

Determining a greedy 
policy for V*

© 2004, Ronald J. Williams Reinforcement Learning: Slide 38

Value Iteration
3

4

3

4

s1 s2

s3 s4

Optimal policy
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Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy π
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Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy 

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π

Compute its return:
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Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy 

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π
Really just solving a system 

of linear equations

Compute its return:
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Policy Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

15.3 17.7

14.7 20

a320.017.217.9s4

a319.018.914.8s3

a317.814.215.8s2

a115.218.920.0s1

besta3a2a1

Lookahead value
along action

Determining a greedy 
policy for πV
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Policy Iteration

4

2

1 2

s1 s2

s3 s4

New policy after one step of policy iteration
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Policy Iteration vs. Value Iteration: 
Which is better?

It depends.
Lots of actions? Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic?   Value Iteration

Best of Both Worlds:
Modified Policy Iteration   [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
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Maze Task

S

G

Reward = -1 at every step                           γ = 1

G is an absorbing state, terminating any single trial, with a reward of 100

Effect of actions is deterministic

4 actions
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Maze Task

959493929190898887

9695949291908988

9796959493928887

989493 92918786

99939291908685

10092919089888786

V* What’s an optimal 
path from S to G?

S

G
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Maze Task

959493929190898887

9695949291908988

9796959493928887

989493 92918786

99939291908685

10092919089888786

V* 

S

G
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Another Maze Task

S

G

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the 
right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

Now what’s an 
optimal path 
from S to G?
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Another Maze Task

94.8193.9793.0892.1791.1790.2181.7881.7381.44

95.9094.9893.9891.6190.6681.882.8982.39

97.0095.9994.8993.7092.6191.4484.9583.33

98.0093.8892.8791.8590.8385.0384.25

99.0092.7891.8790.8789.9386.1385.15

10091.6990.8689.9689.0588.1487.1486.04

With probability 0.2, a small wind gust might displace the agent one cell to the right or left 
of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

S

G

V* 
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State-action values (Q-values)
• Note that in this example it’s misleading to 

consider optimal path – especially since 
randomness may knock the agent off it at any 
time

• To use these state values to choose actions, need 
to consult transition function T for each action at 
the current state, then choose the one giving the 
best expected cumulative reward

• Alternative approach: For this example, at each 
state keep track of 4 numbers, not just 1, 
corresponding to each possible action – best action 
is the one with the highest such state-action value
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Q-Values
• For any policy    , define

by

where the initial state s(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and 
rewards arise from the transition, policy, and 
reward functions, respectively.

• Just like      except that action a is taken as the 
very first step and only after this is policy
followed

• Bellman equations can be rewritten in terms of
Q-values

π

∑
∞

=

=
0

)(),(
t

t trasQ γπ

Reals: →× ASQπ

πV
π

Once again, the correct expression 
for a general MDP should use 
expected values here
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Q-Values (cont.)
• Define                , where      is an optimal policy. 
• There is a corresponding Bellman equation for

since

• Given any state-action value function Q, define a 
policy     to be greedy for Q if

for all s.
• An optimal policy is greedy for
• Ultimately just a convenient reformulation of the  

Bellman equation

** πQQ = *π
*Q

),(max)( ** asQsV a=

π
),(maxarg)( asQs a=π

*Q

Why it’s convenient will become apparent 
once we start discussing learning
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What are Q-values?

10a2s2

17.1a1s2

3a2s1

-5a1s1

Return should 
be

And starts with this 
action and then 
follows the policy

If agent is in this 
state

. . . . . .. . .
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Where’s the learning?
• So far, just looking at how to solve MDPs

and how such solutions lead to optimal 
choices of action

• Before getting to learning, let’s take a peek 
beyond MDPs: POMDPs

• More realistic but much harder to solve
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a(0) a(1) a(2)
o(0) o(1) o(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where  0 ≤ γ ≤ 1.             

More General RL Task

γ = discount factor

Agent

Environment
Observation Reward Action
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Partially Observable Markov Decision Process
• Set of states S
• Set of observations O
• Set of actions A
• Immediate reward function

• Transition (next-state) function

• Observation function

• More generally, R ,T , and B are stochastic

Reals: →× ASR

SAST →×:

OSB →:
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POMDP (cont.)
• Ideally, want a policy mapping all possible 

histories to a choice of actions that 
optimizes the cumulative reward measure

• In practice, settle for policies that choose 
actions based on some amount of memory 
of past actions and observations

• Special case: reactive policies
• Map most recent observation to a choice of 

action
• Also called memoryless policies
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What’s a reactive policy?

a3o4

a1o3

a7o2

a3o1

Then a good action isIf agent observes this

. . . . . .
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Maze Task with Perceptual Aliasing

001100100010011000100010001000101010

00010000100000010000010000001000

00010010000000100000100000011000

1001000100000000100000011000

1001000100000000100000011000

11010101010001000100011001001100

Can sense if there is a wall immediately to east, north, south, or west

Represented as a corresponding 4-bit string

Only 12 distinct possible observations

G

S

Turns this maze task 
into a POMDP
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POMDP Theory
• In principle, can convert any POMDP into an 

MDP with states = belief states
• Belief state is a function: S -> Reals

assigning to any s the probability that 
actual state is s

• Drawback: Even if underlying state space is 
finite (say, n states), space of belief states is 
an (n-1)-dimensional simplex.  Solving this 
continuous-state MDP is much too hard.
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Practical approaches to POMDPs
• Use certain MDP methods, treating observations 

like states, and hope for the best
• Try to determine how much past history to store 

to represent actual states, then treat as an MDP 
(involves inference of hidden state, as in hidden 
Markov models)
• history window
• finite-state memory
• recurrent neural nets

• Do direct policy search in a restricted set of 
policies (e.g., reactive policies) Revisit this briefly later
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• Now back to the observable state case ...
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AI state space planning
• Traditionally, true world model available a priori
• Consider all possible sequences of actions starting 

from current state up to some horizon – forms a 
tree

• Evaluate the states reached at the leaves
• Find the best, and choose the first action in that 

sequence
• How should non-terminal states be evaluated?

• V* would be ideal
• But then only 1 step of lookahead would be necessary

• Usual perspective: use depth of search to make up 
for imperfections in state evaluation

• In control engineering, called receding horizon
controller

© 2004, Ronald J. Williams Reinforcement Learning: Slide 64

Once again, where’s the learning?
• Patience – we’re almost there
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Backups
• Term used in the RL literature for any 

updating of V(s) by replacing it by

where a is some action, which also includes 
the possibility of replacing it by

• Closely related to notion of backing up 
values in a game tree 

)),((),( asTVasR γ+

))},((),({max asTVasRa γ+
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Backups
• Term used in the RL literature for any 

updating of V(s) by replacing it by

where a is some action, which also includes 
the possibility of replacing it by

• Closely related to notion of backing up 
values in a game tree 

)),((),( asTVasR γ+

))},((),({max asTVasRa γ+

Sometimes call 
this a backup
along action a

Sometimes call 
this a max-
backup
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Backups
• The operation of backing up values is one of 

the primary links between MDP theory and 
RL methods

• Some key facts making these classical MDP 
algorithms relevant to online learning 
• value iteration consists solely of  (max-)backup 

operations
• policy evaluation step in policy iteration can be 

performed  solely with backup operations (along 
the policy)

• backups modify the value at a state solely based 
on the values at successor states
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Synchronous vs. asynchronous
• The value iteration and policy iteration algorithms 

demonstrated here use synchronous backups, but 
asynchronous backups (implementable by 
“updating in place”) can also be shown to work

• Value iteration and policy iteration can be seen as 
two ends of a spectrum

• Many ways of interleaving backup steps and policy 
improvement steps can be shown to work, but not 
all (Williams & Baird, 1993)
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Generalized Policy Iteration
• GPI coined to apply to the wide range of RL 

algorithms that combine simultaneous 
updating of values and policies in intuitively 
reasonable ways

• It is known that not every possible GPI 
algorithm converges to an optimal policy

• However, only known counterexamples are 
contrived

• Remains an open question whether some of 
the ones found successful in practice are 
mathematically guaranteed to work
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Generalized Policy Iteration

10a1s4

17.1a4s3

3a3s2

-5a7s1

Estimated optimal 
return

Estimated best actionIf agent is in this state

. . . . . .. . .
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Learning – Finally!
• Almost everything we’ve discussed so far is 

“classical” MDP (or POMDP) theory
• Transition, reward functions known a priori
• Issue is purely one of (off-line) planning

• Four ways RL theory goes beyond this
• Assume transition and/or reward functions not known a 

priori – must be discovered through environmental 
interactions

• Try to address tasks for which classical approach is 
intractable 

• Take seriously the idea that policy and/or values not 
represented simply using table lookup

• Even when T and R are known, only do a kind of online 
planning in parts of state space actually experienced
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Internal components of a RL agent

Action 
Selector

state action

Evaluator
state

action

(optional)

value

If present, trained using 
actual experiences in the 
world

World
Model

state

action

predicted next state

predicted reward

(optional)

If present, trained using
temporal difference methods

Also called critic

Always present, may incorporate 
some exploratory behavior

Also called controller or actor
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Unknown transition and/or
reward functions

• One possibility: Learn the MDP through 
exploration, then solve it (plan) using offline 
methods: learn-then-plan approach

• Another way: Never represent anything about the 
MDP itself, just try to learn the values directly: 
model-free approach

• Yet another possibility: Interleave learning of the 
MDP with planning – every time the model 
changes, re-plan as if current model is correct: 
certainty-equivalence planning

• Many approaches to RL can be viewed as trying to 
blend learning and planning more seamlessly

© 2004, Ronald J. Williams Reinforcement Learning: Slide 74

What about directly learning a policy?
• One possibility: Use supervised learning

• Where do training examples come from?
• Need prior expertise
• What if set of actions is different in different states? 

(e.g. games) may be difficult to represent the policy
• Another possibility: generate and test

• Search the space of policies, evaluating many 
candidates

• Genetic algorithms, genetic programming, e.g.
• Policy-gradient techniques

• Upside:
• can work even in POMDPs

• Downside:
• the space of policies may be way too big
• evaluating each one individually may be too time-consuming
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Direct policy search
• Model-free and

value-free
• Can be used for 

POMDPs as well
• Requires that action 

selector have a way 
to explore policy 
space

Action 
Selector

state action

Accumulate 
over time

reward

• Many possible approaches
• Genetic algorithms
• Policy gradient
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• For the rest of this lecture, we focus solely 
on RL approaches using value functions:
• Temporal difference methods
• Q-learning
• Actor/critic systems
• RL as a blend of learning and planning
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Temporal 
Difference 
Learning

Only maintain a V array…
nothing else

So you’ve got
V (s1), V (s2), ··· V(sn)

and you observe
s    r s’

what should you do?
Can You Guess ?

[Sutton 1988]

A transition from s that receives 
an immediate reward of r and 
jumps to s’
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TD Learning
After making a transition from s to s’ and receiving reward r, 

we nudge V(s) to be closer to the estimated return based on 
the observed successor, as follows:

( ) ( )( ) ( ) ( )
  

s1ss
α

αγα VVrV −+′+←
is called a “learning rate” parameter. 

For            this represents a partial backup.

Furthermore, if the rewards and/or transitions are stochastic, as in a 
general MDP, this is a sample backup.

The reward and next-state values are only noisy estimates of the 
corresponding expectations, which is what offline DP would use in 
the appropriate computations (full backup).

Nevertheless, this converges to the return for a fixed policy (under the 
right technical assumptions, including decreasing learning rate)

1 <α
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TD(λ)
• Updating the value at a state based on just the 

succeeding state is actually the special case TD(0) 
of a parameterized family of TD methods

• TD(1) updates the value at a state based on all
succeeding states

• For 0 < λ < 1, TD(λ) updates a state’s value base 
on all succeeding states, but to a lesser extent the 
further into the future

• Implemented by maintaining decaying eligibility 
traces at each state visited (decay rate = λ)

• Helps distribute credit for future rewards over all 
earlier actions Can help mitigate effects of violation of Markov property
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Model-free RL

Why not use  TD on state values?
Observe

update
S a S’

r

( ) ( )( ) ( ) ( )sVsVrsV ′−+′+← αγα 1  
What’s wrong with this?
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Model-free RL

Why not use  TD on state values?
Observe

update
S a S’

r

( ) ( )( ) ( ) ( )sVsVrsV ′−+′+← αγα 1  
What’s wrong with this?

1. Still can’t choose actions without knowing what next state (or 
distribution over next states) results: requires an internal model of T

2. The values learned will represent the return for the policy we’ve 
followed, including any suboptimal exploratory actions we’ve taken: 
not clear this will t help us act optimally
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But ...
• Recall our earlier definition of Q-values:
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Q-values
• For any policy    , define

by

where the initial state s(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and 
rewards arise from the transition, policy, and 
reward functions, respectively.

• Just like      except that action a is taken as the 
very first step and only after this is policy
followed

π

∑
∞

=

=
0

)(),(
t

t trasQ γπ

Reals: →× ASQπ

πV
π

Once again, the correct expression 
for a general MDP should use 
expected values here
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Q-values
• Define                , where      is an optimal policy. 
• There is a corresponding Bellman equation for

since

• Given any state-action value function Q, define a 
policy     to be greedy for Q if

for all s.
• An optimal policy is greedy for  

** πQQ = *π
*Q

),(max)( ** asQsV a=

π
),(maxarg)( asQs a=π

*Q
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Q-learning
(Watkins, 1988)
• Assume no knowledge of R or T.
• Maintain a table-lookup data structure Q 

(estimates of Q*) for all state-action pairs 

• When a transition s    r s’ occurs, do

• Essentially implements a kind of asynchronous 
Monte Carlo value iteration, using sample backups

• Guaranteed to eventually converge to Q* as long 
as every state-action pair sampled infinitely often

( ) ( )( ) ( ) ( )asQasQrasQ
a

,1,max, αγα −+′′+←
′
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Q-learning
• This approach is even cleverer than it looks:  the

Q values are not biased by any particular 
exploration policy.  It avoids the credit assignment
problem.

• The convergence proof extends to any variant in 
which every Q(s,a) is updated infinitely often, 
whether on-line or not.
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Q-learning Agent

• Action selector trivial: 
queries Q-values to find 
action for current state 
with highest value

• Occasionally also takes 
exploratory actions

• Model-free: Does not need to know the 
effects of actions

Q-value 
Estimator

Action 
Selector

state action

proposed 
action

value

reward
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Using Estimated Optimal Q-values

10a2s2

17.1a1s2

3a2s1

-5a1s1

Return should 
be

And starts with this 
action and then 
follows the optimal 
policy thereafter

If agent is in this 
state

. . . . . .. . .
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Q-Learning: Choosing Actions
• Don’t always be greedy
• Don’t always be random (otherwise it will take a long time 

to reach somewhere exciting)

• Boltzmann exploration  [Watkins]

Prob(choose action a) 

• With some small probability, pick random action; else pick 
greedy action (called ε-greedy policy)

• Optimism in the face of uncertainty  [Sutton ’90, Kaelbling 
’90]

Initialize Q-values optimistically high to encourage exploration
Or take into account how often each (s,a) pair has been tried

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∝

t

as
K

,Qexp
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Another Model-free RL Approach

• Action selector 
implements a 
randomized policy

• Its parameters are 
adjusted based on 
a reward/penalty 
scheme

• No definitive theoretical analysis yet available, but 
has been found to work in practice

• Represents a specific instance of generalized 
policy iteration (extended to randomized policies)

State Value 
Estimator

Action 
Selector

state action

“heuristic 
reward”

reward

“Actor/Critic” (Barto, Sutton & Anderson, 1983)
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Learning or planning?
• Classical DP emphasis for optimal control

• Dynamics and reward structure known
• Off-line computation

• Traditional RL emphasis
• Dynamics and/or reward structure initially 

unknown
• On-line learning

• Computation of an optimal policy off-line 
with known dynamics and reward structure 
can be regarded as planning
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Primitive use of a learned model: DYNA

• In this diagram, primitive just means model-free 
• Seamlessly integrates learning and planning
• World model can just be stored past transitions
• Main purpose is to improve efficiency over a model-free RL 

agent without incorporating a sophisticated model-learning 
component

(Sutton, 1990)



47

© 2004, Ronald J. Williams Reinforcement Learning: Slide 93

Priority DYNA

• Original DYNA used randomly selected transitions
• Efficiency improved significantly by prioritizing value 

updating along transitions in parts of state space most 
likely to improve performance fastest

• In goal-state tasks updating may occur in breadth-first 
fashion backwards from goal, or like A* working 
backwards, depending on how priority is defined

(Williams & Peng, 1993; Moore & Atkeson, 1993)
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Beyond table lookup
• Why not table lookup?

• Too many states (even if finitely many)
• Continuous state space
• Want to be able to generalize – no hope of visiting every 

state, or computing something at every state

• Alternatives
• State aggregation (e.g., quantization of continuous state 

spaces)
• Generalizing function approximators

• Neural networks (including variants like radial basis functions,
tile codings)

• Nearest neighbor methods
• Decision trees

Bad news: very little theory to 
predict how well or poorly 
such techniques will perform
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Challenges
• How do we apply these techniques to infinite (e.g., 

continuous), or even just very large, state spaces?
• Pole-balancer
• Truck backer-upper
• Mountain car (or puck-on-a-hill)
• Bioreactor
• Acrobot
• Multi-jointed snake
• Continuous mazes

• Two basic approaches for continuous state spaces
• Quantize (to obtain a finite-state approximation)

• One promising approach: adaptive partitioning
• Use function approximators (nearest-neighbor, neural 

networks, radial basis functions, tile codings, etc.)

Together with finite-state mazes 
of various kinds, these tasks 
have become benchmark test 
problems for RL techniques
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Pole balancer
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Truck backer-upper
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Puck on a hill (or “mountain car”)
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Bioreactor

inflow rate = w 
contains nutrients

outflow rate = w

contains cells c1 
and nutrients c2
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Acrobot
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Multi-jointed “snake”
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Dealing with large numbers of states

S15122189

:

S2

s1

VALUESTATE

Don’t use a Table…

use…
(Generalizers)                                                  (Hierarchies)

Splines

A Function 
Approximator

Variable Resolution

Multi Resolution

Memory
BasedSTATE VALUE

[Munos 1999]
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Function approximation
for value functions

Polynomials               [Samuel, Boyan, Much O.R.
Literature]

Neural Nets               [Barto & Sutton, Tesauro,    
Crites, Singh, Tsitsiklis]

Splines Economists, Controls

Downside:     All convergence guarantees disappear.

Backgammon, Pole 
Balancing, Elevators, 
Tetris, Cell phones

Checkers, Channel 
Routing, Radio Therapy
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Memory-based Value Functions
V(s) = V (most similar state in memory to s ) 

or
Average of V (20 most similar states)

or
Weighted Average of V (20 most similar states)
[Jeff Peng, Atkenson & Schaal,
Geoff Gordon,        proved stuff
Scheider, Boyan & Moore  98]

“Planet Mars Scheduler”



53

© 2004, Ronald J. Williams Reinforcement Learning: Slide 105

Hierarchical Methods
Continuous State Space: “Split a state when statistically 

significant that a split would 
improve performance”

e.g. Simmons et al 83, Chapman 
& Kaelbling 92, Mark Ring 94 …, 
Munos 96

with interpolation!
“Prove needs a higher 
resolution”

Moore 93, Moore & 
Atkeson 95

Discrete Space:
Chapman & Kaelbling 92, 
McCallum 95 (includes 
hidden state)

A kind of Decision 
Tree Value Function

Multiresolution

A hierarchy with high level “managers” abstracting low level “servants”
Many O.R. Papers, Dayan & Sejnowski’s Feudal learning, Dietterich 1998 (MAX-Q 
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Continuous Space
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Open Issues
• Better ways to deal with very large state and/or 

action spaces
• Theoretical understanding of various practical GPI 

schemes
• Theoretical understanding of behavior when value 

function approximators used
• More efficient ways to integrate learning of 

dynamics and GPI
• Computationally tractable approaches when 

Markov property violated
• Better ways to learn and take advantage of 

hierarchical structure and modularity
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Valuable References
• Books

• Bertsekas, D. P. & Tsitsiklis, J. N. (1996).  
Neuro-Dynamic Programming.  Belmont, MA: 
Athena Scientific

• Sutton, R. S. & Barto, A. G. (1998).  
Reinforcement Learning: An Introduction.  
Cambridge, MA: MIT Press

• Survey paper
• Kaelbling, L. P., Littman, M. & Moore, A. (1996). 

“Reinforcement learning: a survey,” Journal of 
Artificial Intelligence Research, Vol. 4, pp. 237-
285.  (Available as a link off the main Andrew 
Moore tutorials web page.)
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What You Should Know
• Definition of an MDP (and a POMDP)
• How to solve an MDP

• using value iteration
• using policy iteration

• Model-free learning (TD) for predicting 
delayed rewards

• How to formulate RL tasks as MDPs (or 
POMDPs)

• Q-learning (including being able to work 
through small simulated examples of RL)


