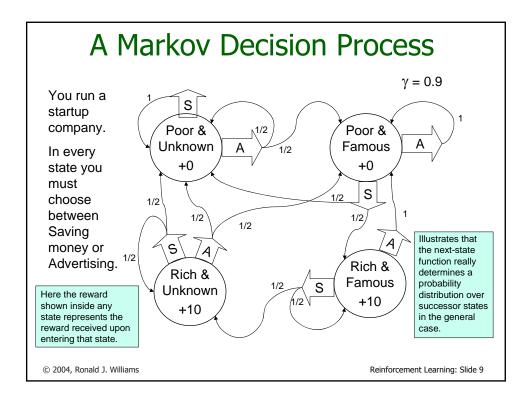
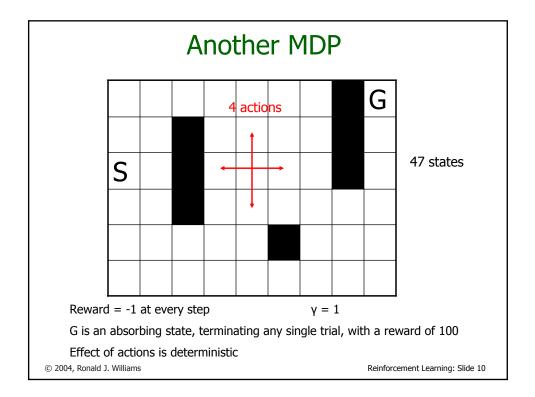


	What's a	a policy?				
	If agent is in this state	Then a good action is				
	S ₁	a ₃				
	S ₂	a ₇				
	S ₃	a ₁				
	S ₄	a ₃				
Note: To be more precise, this is called a <i>stationary</i> policy because it depends only on the state. The policy might depend, say, on the time step as well. Such policies are sometimes useful; they're called <i>nonstationary</i> policies.						
© 2004, Ronald J. Williams Reinforcement Learning: Slide 8						





Applications of MDPs

Many important problems are MDPs....

- ... Robot path planning
- ... Travel route planning
- ... Elevator scheduling
- ... Bank customer retention
- ... Autonomous aircraft navigation
- ... Manufacturing processes
- ... Network switching & routing

And many of these have been successfully handled using RL methods

© 2004, Ronald J. Williams

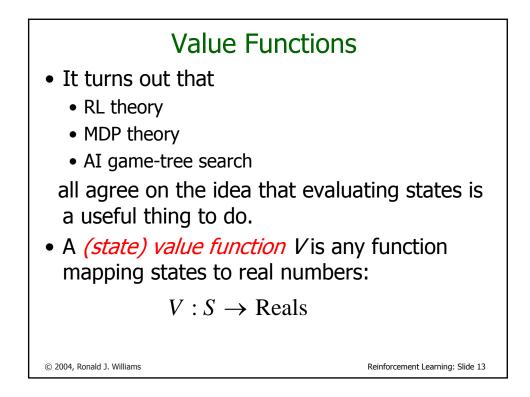
Reinforcement Learning: Slide 11

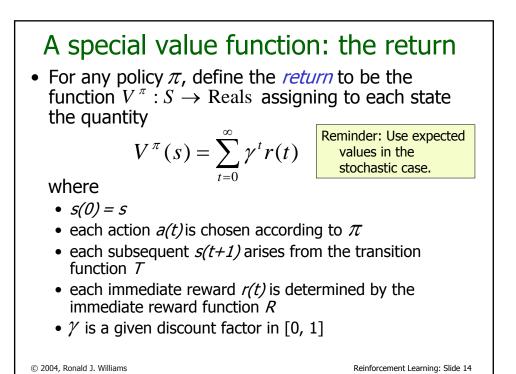
From a situated agent's perspective

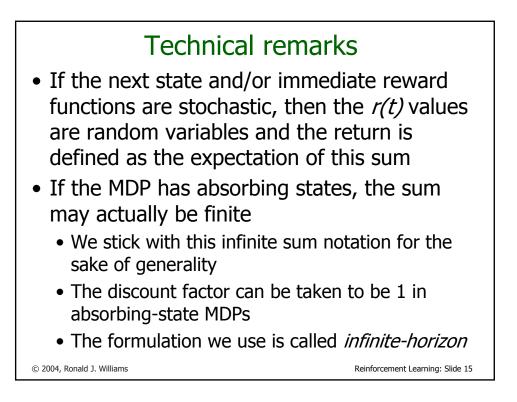
- At time step *t*
 - Observe that I'm in state s(t)
 - Select my action *a*(*t*)
 - Observe resulting immediate reward *r*(*t*)
- Now time step is *t*+1
 - Observe that I'm in state *s*(*t*+1)
 - etc.

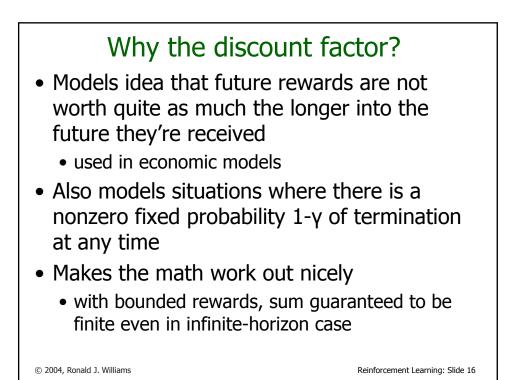
© 2004, Ronald J. Williams

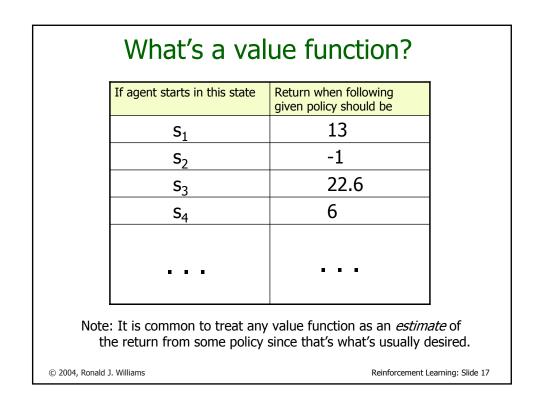
Reinforcement Learning: Slide 12

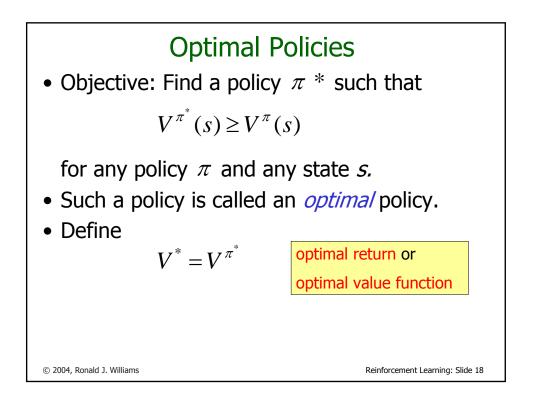


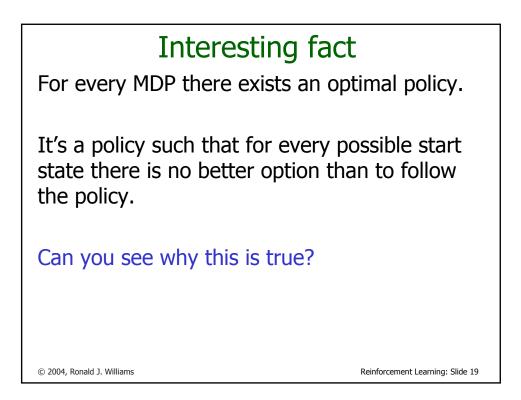


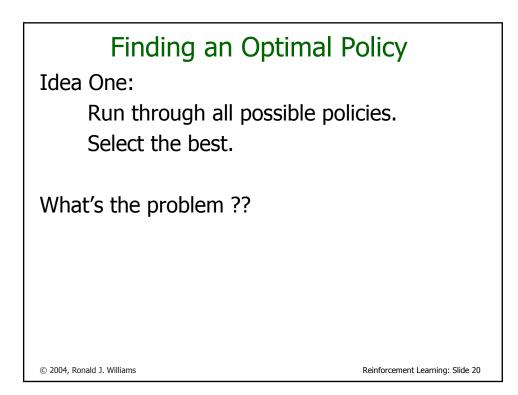


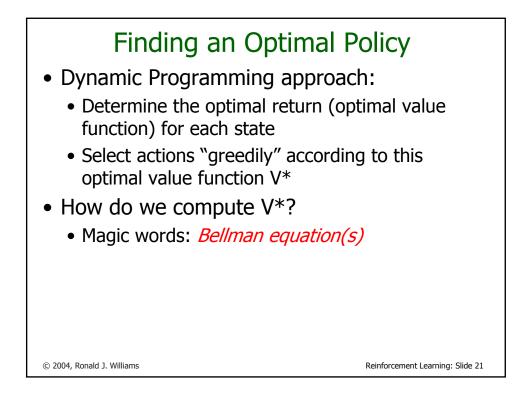


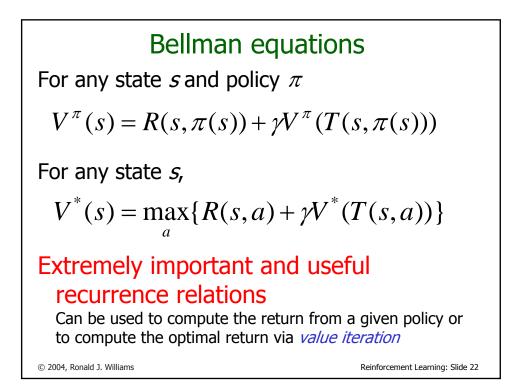


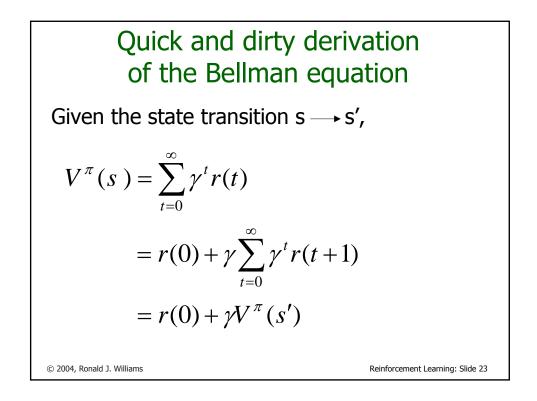




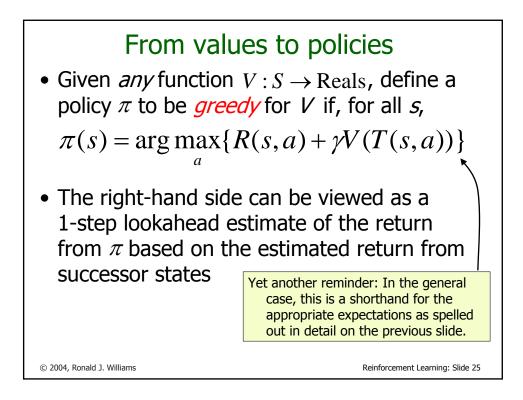


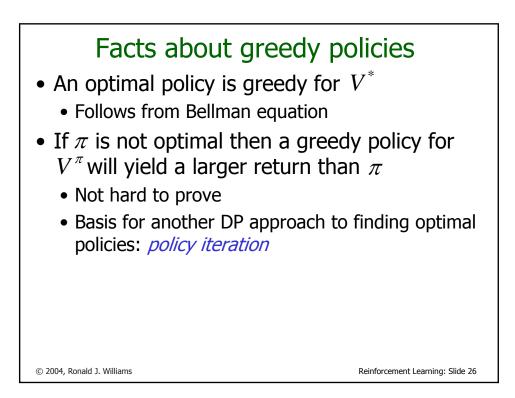


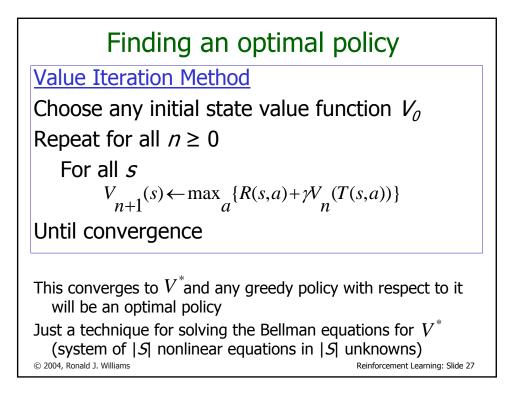


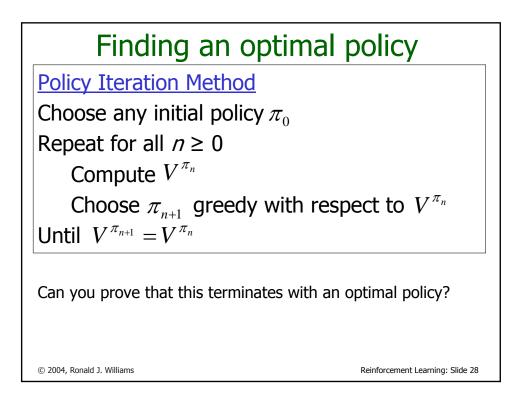


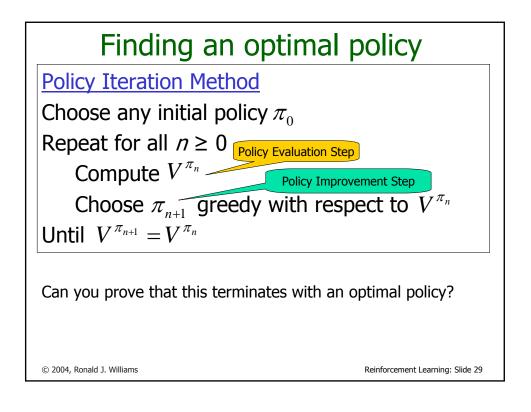
<text><text><equation-block><equation-block><text><text>

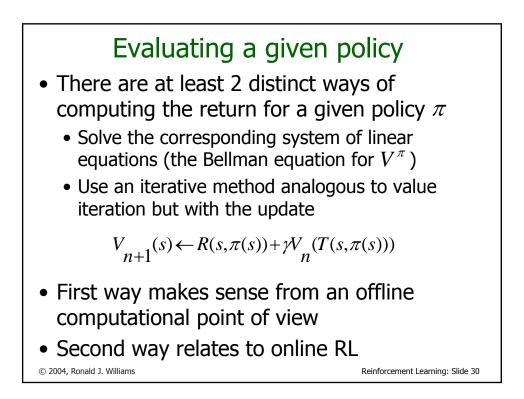


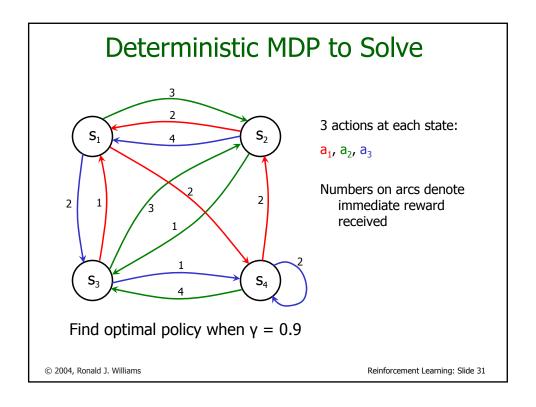


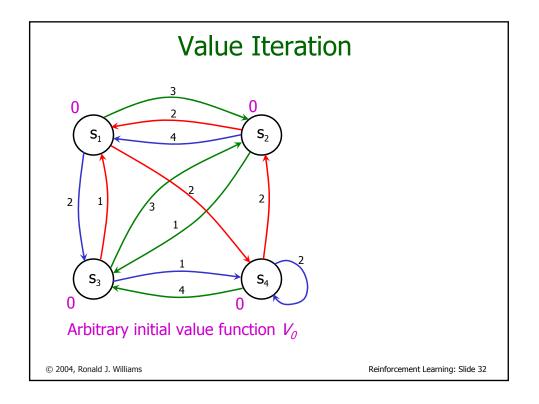


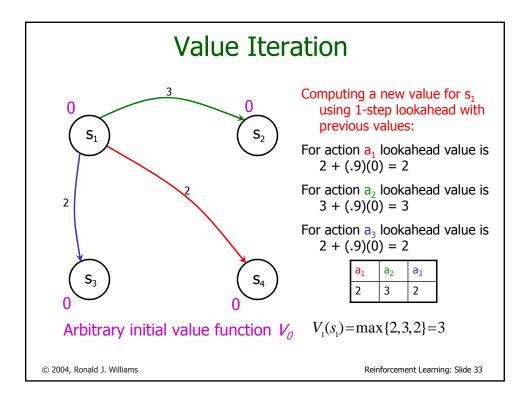


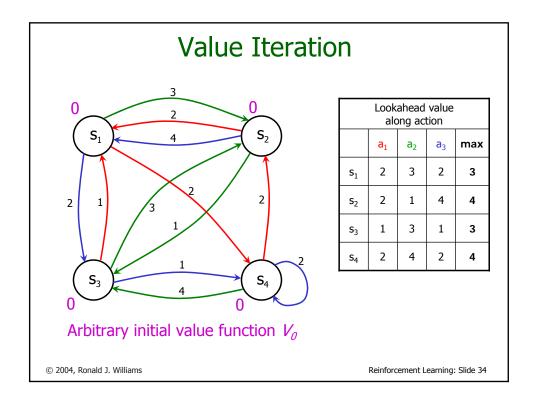


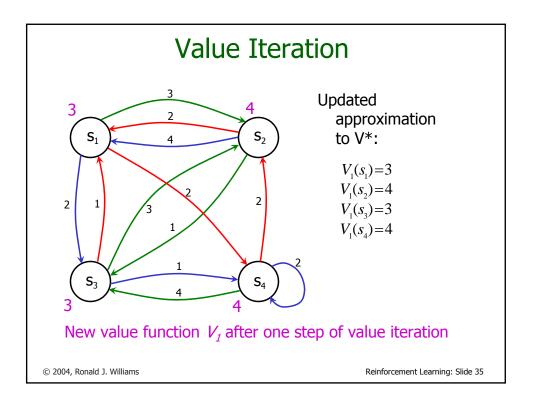


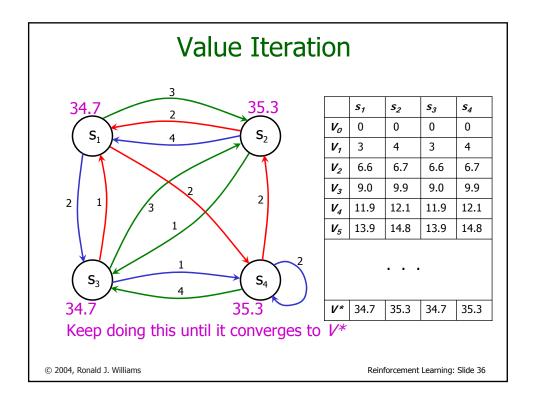


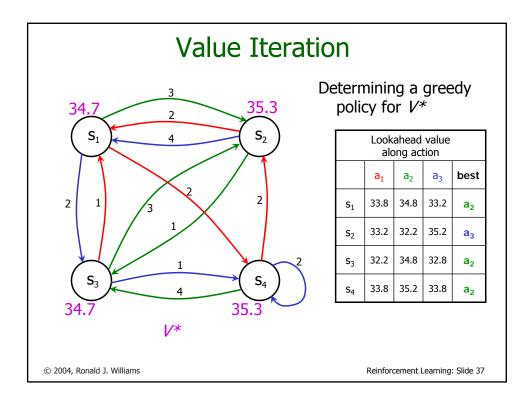


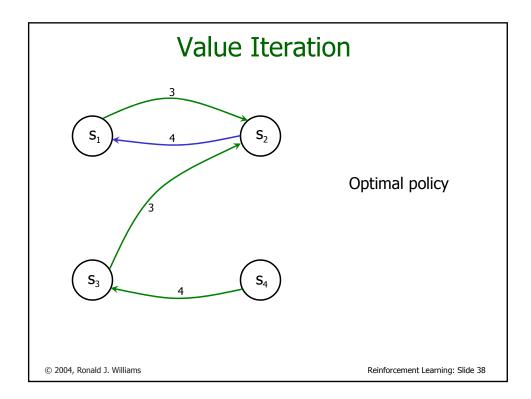


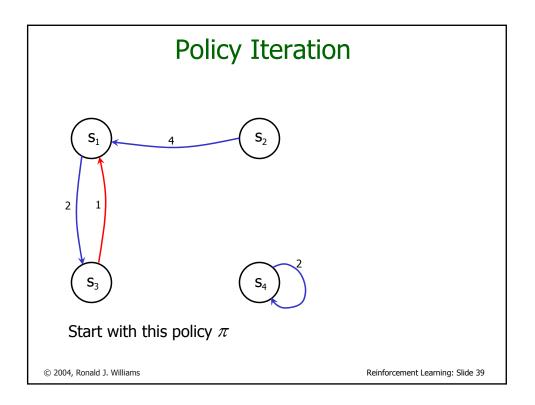


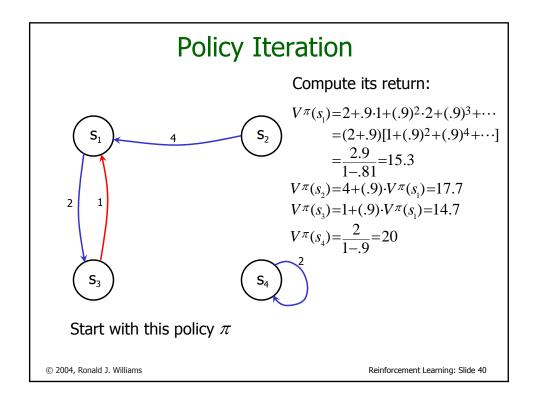


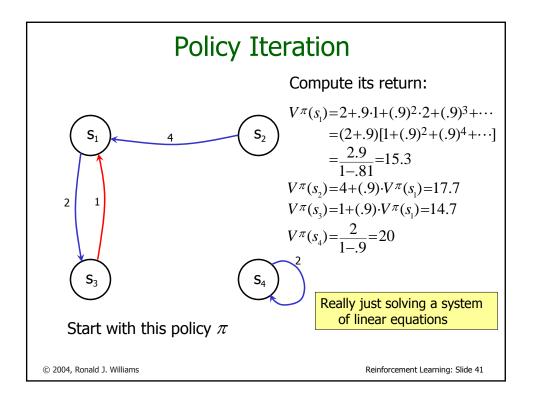


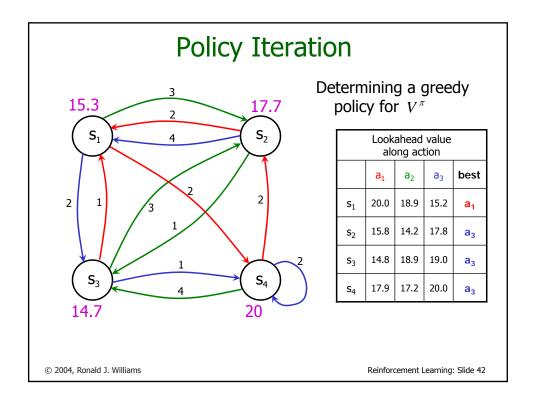


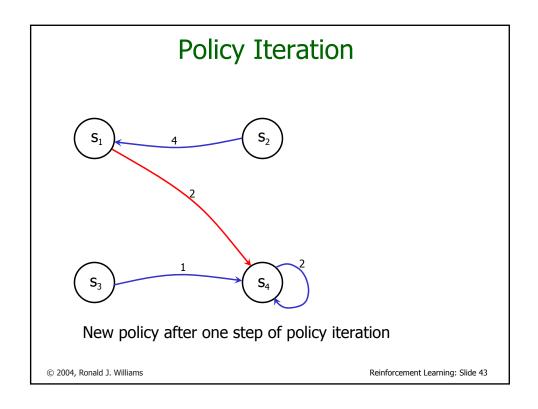












Policy Iteration vs. Value Iteration: Which is better?

It depends.

Lots of actions? Policy Iteration Already got a fair policy? Policy Iteration Few actions, acyclic? Value Iteration

Best of Both Worlds:

Modified Policy Iteration [Puterman]

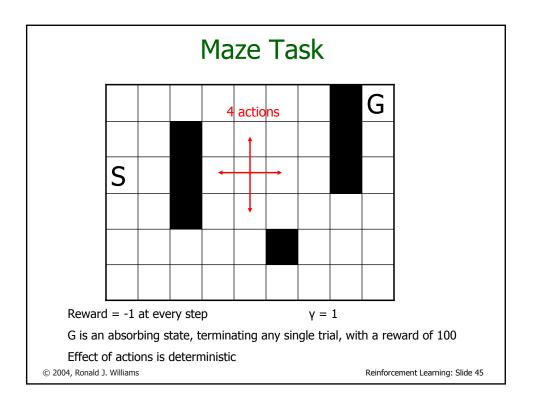
...a simple mix of value iteration and policy iteration

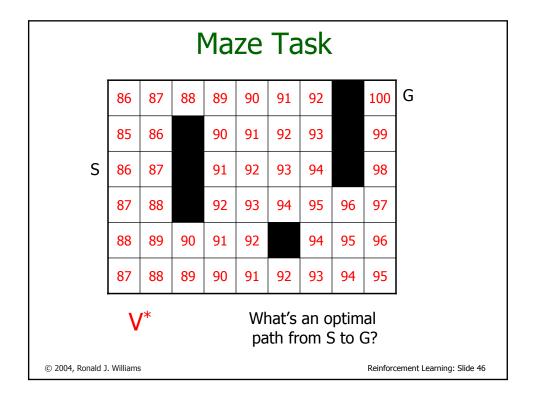
3rd Approach

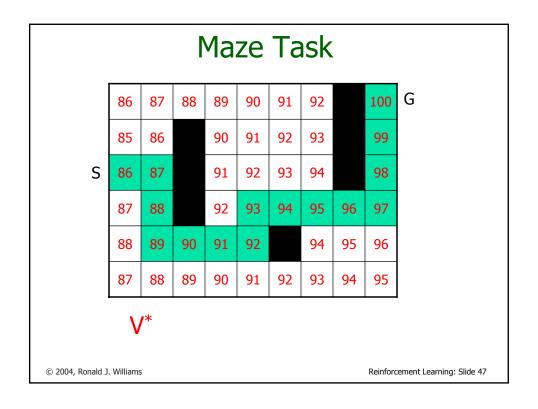
Linear Programming

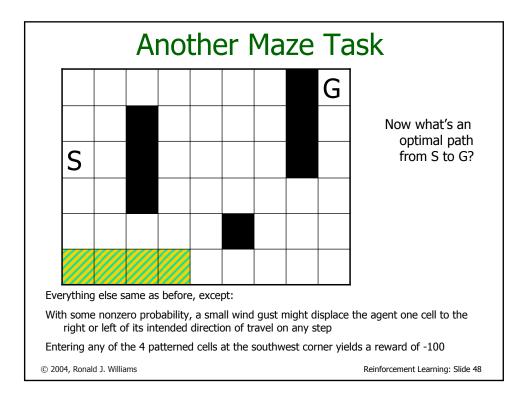
© 2004, Ronald J. Williams

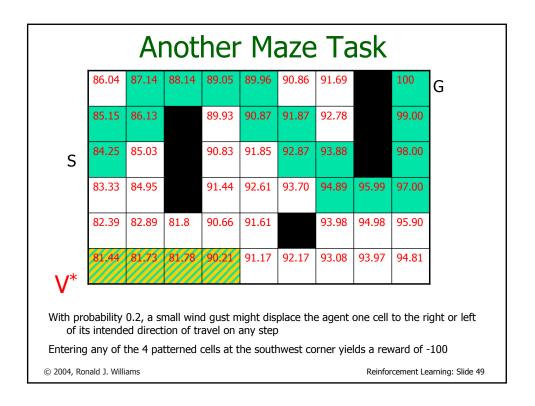
Reinforcement Learning: Slide 44

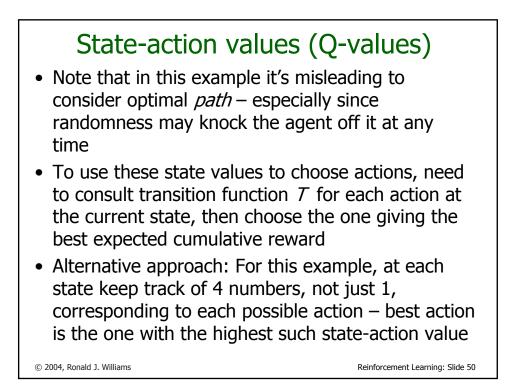


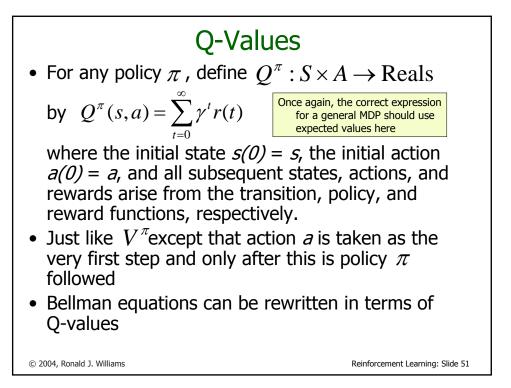


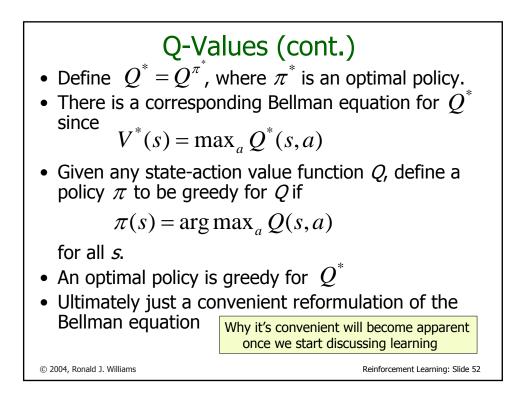




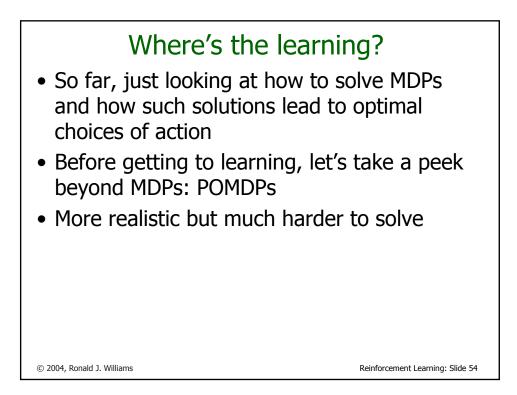


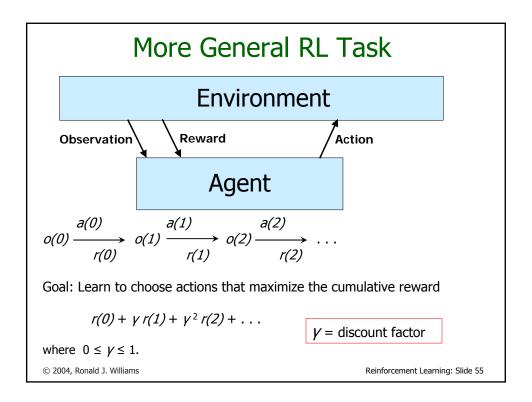


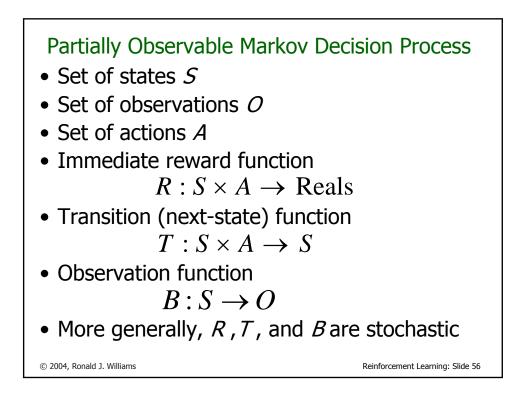


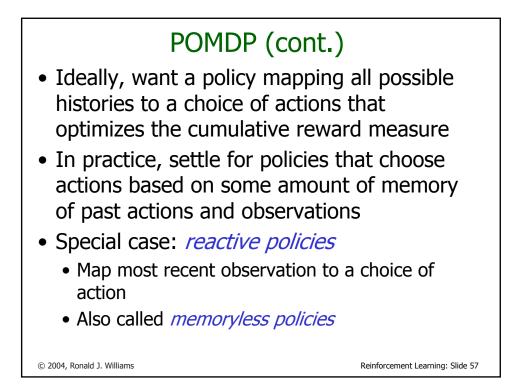


If agent is in this state	And starts with this action and then follows the policy	Return shoul be
s_1	a ₁	-5
s_1	a ₂	3
S ₂	a ₁	17.1
S ₂	a ₂	10



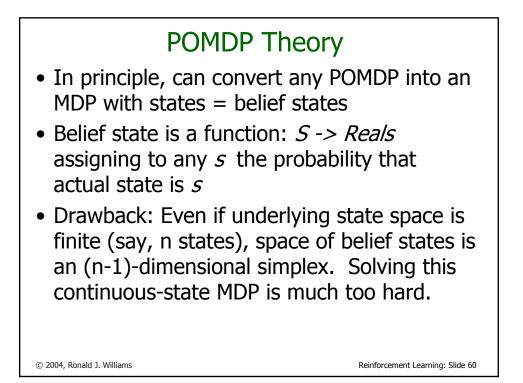


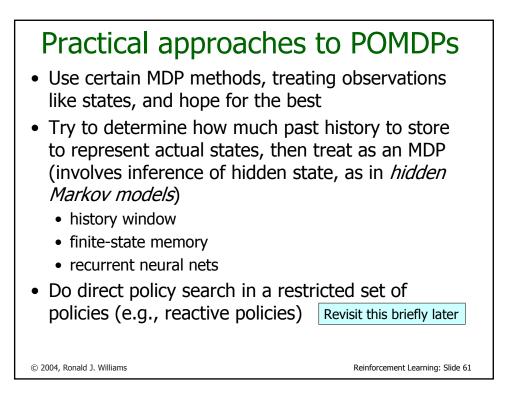


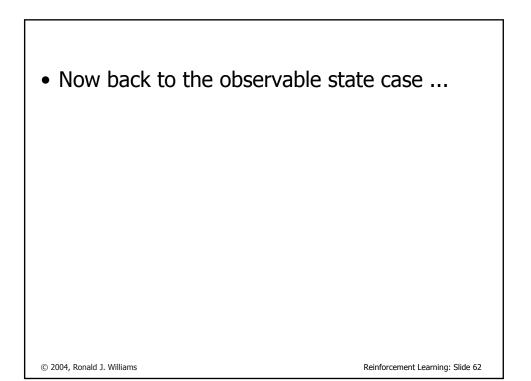


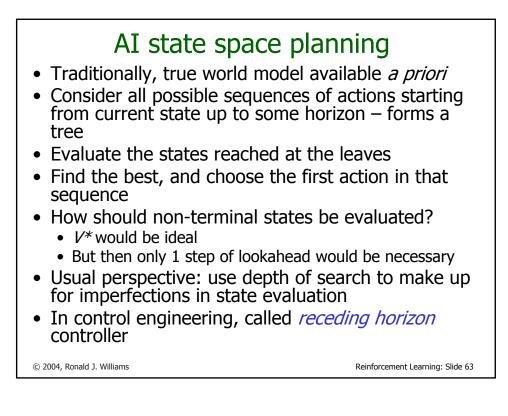
If agent observes this	Then a good action is
0 ₁	a ₃
0 ₂	a ₇
0 ₃	a ₁
0 ₄	a ₃

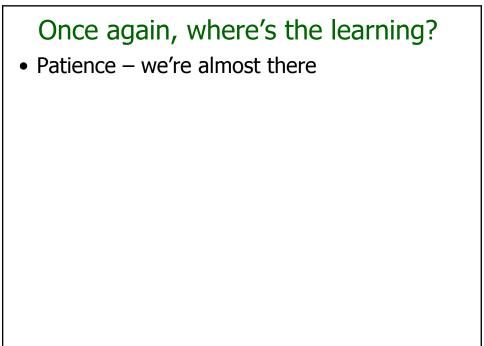
Maze Task with Perceptual Aliasing										
	1100	0100	0110	0100	0100	0100	0101		1101	G
	1000	0001		1000	0000	0000	0001		1001	
S	1000	0001		1000	0000	0000	0001		1001	
	1000	0001		1000	0000	0010	0000	0010	0001	
	1000	0000	0100	0000	0001		1000	0000	0001	
	1010	0010	0010	0010	0010	0110	0010	0010	0011	
Can sense if there is a wall immediately to east, north, south, or west										
Represented as a corresponding 4-bit string Only 12 distinct possible observations					Turns this maze task into a POMDP					
© 2004, Ronald J. Williams Reinforcement Learning: Slide 59										





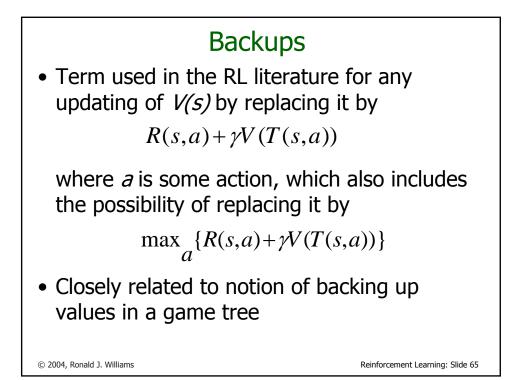


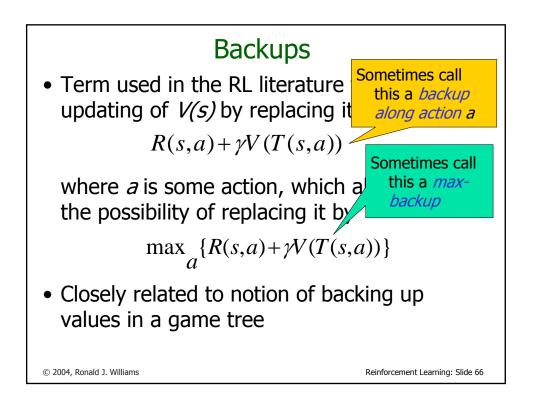


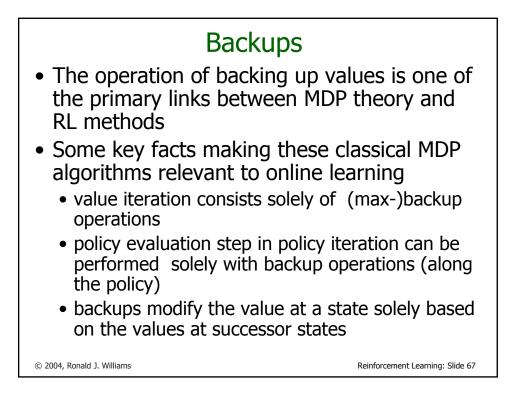


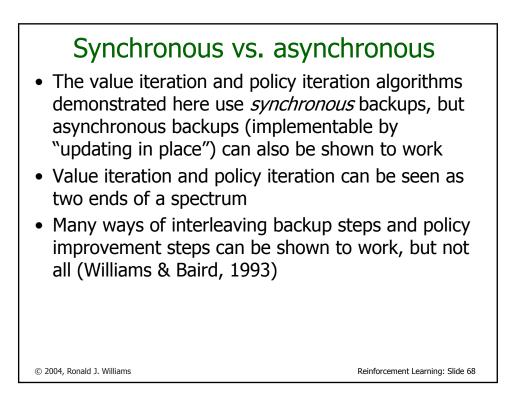
© 2004, Ronald J. Williams

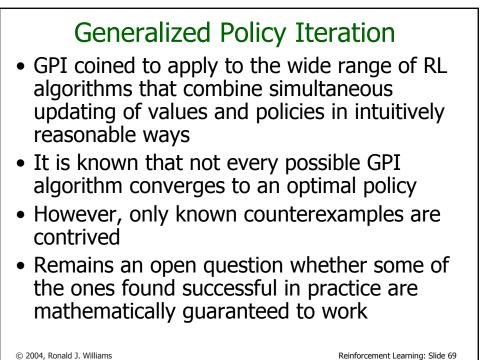
Reinforcement Learning: Slide 64





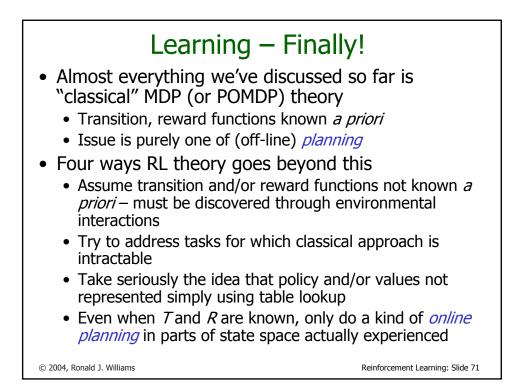


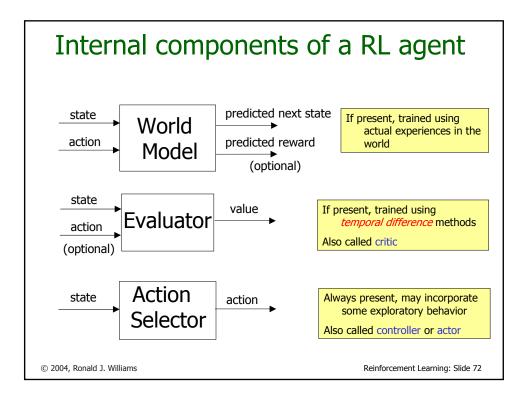




© 2004, Ronald J. Williams

Generalized Policy Iteration If agent is in this state Estimated optimal Estimated best action return -5 S_1 a_7 3 **S**₂ a_3 17.1 S₃ a_4 10 S_4 a_1 © 2004, Ronald J. Williams Reinforcement Learning: Slide 70



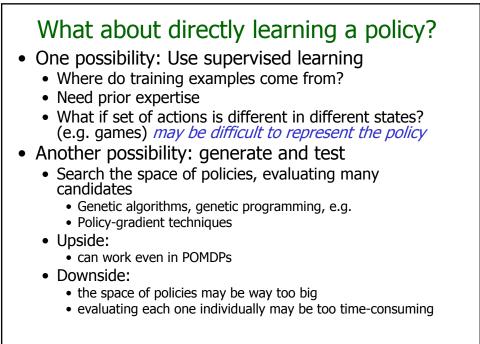


Unknown transition and/or reward functions

- One possibility: Learn the MDP through exploration, then solve it (*plan*) using offline methods: *learn-then-plan* approach
- Another way: Never represent anything about the MDP itself, just try to learn the values directly: *model-free* approach
- Yet another possibility: Interleave learning of the MDP with planning every time the model changes, re-plan as if current model is correct: *certainty-equivalence planning*
- Many approaches to RL can be viewed as trying to blend learning and planning more seamlessly

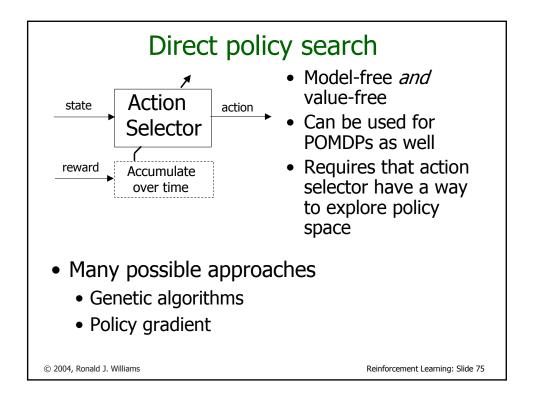
© 2004, Ronald J. Williams

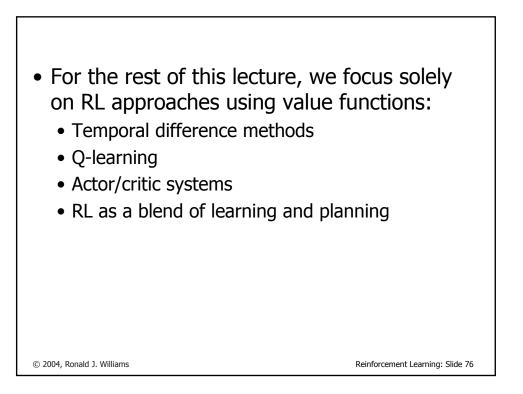
Reinforcement Learning: Slide 73



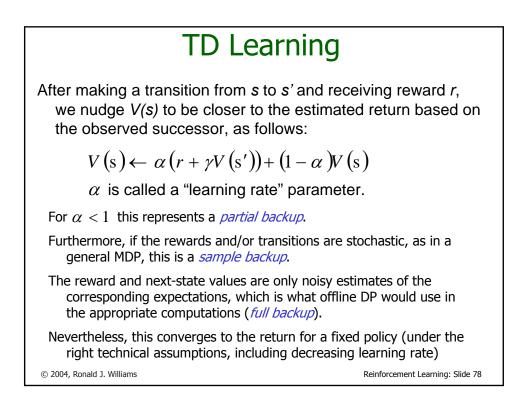
© 2004, Ronald J. Williams

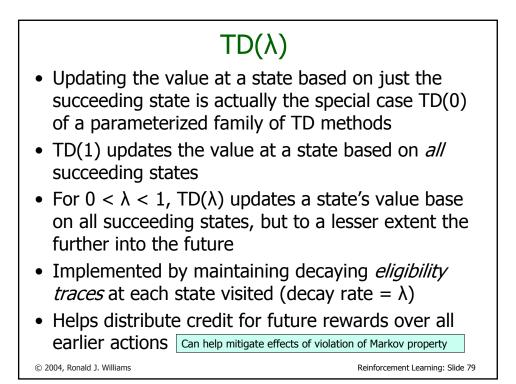
Reinforcement Learning: Slide 74

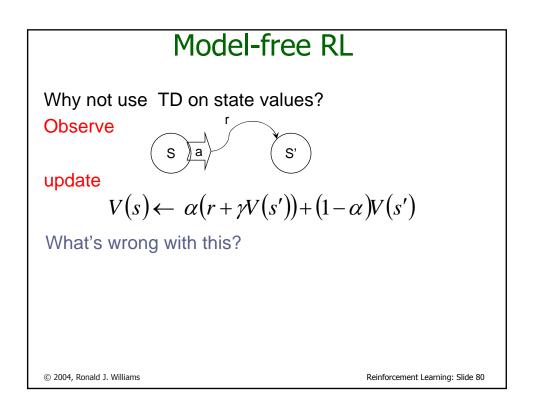


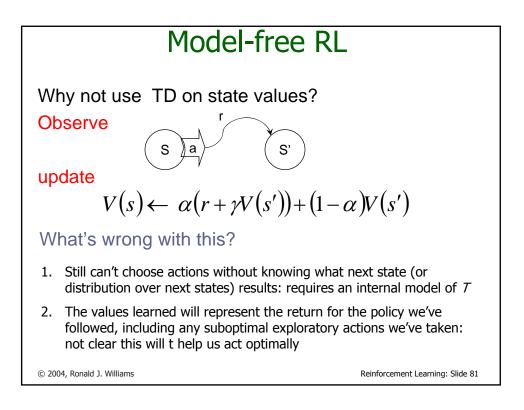


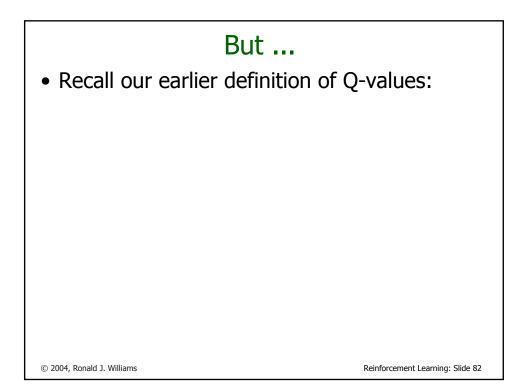
Temporal Difference Learning	[Sutton 1988]
Only maintain a V array nothing else	
So you've got $V(s_1), V(s_2), \dots V(s_n)$ and you observe $s \xrightarrow{r} s'$ what should you do?	A transition from s that receives an immediate reward of r and jumps to s'
Can You Guess ?	
© 2004, Ronald J. Williams	Reinforcement Learning: Slide 77

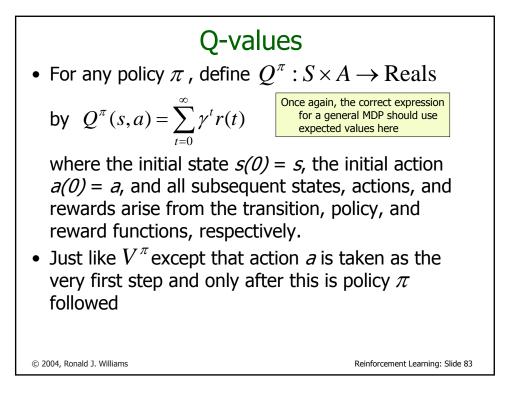












Q-values • Define $Q^* = Q^{\pi^*}$, where π^* is an optimal policy. • There is a corresponding Bellman equation for Q^* since $V^*(s) = \max_a Q^*(s, a)$ • Given any state-action value function Q, define a policy π to be greedy for Q if $\pi(s) = \arg \max_a Q(s, a)$ for all s. • An optimal policy is greedy for Q^*

