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K-means
Clustering

Ronald J. Williams
CSG220

Spring 2007

A selected subset of slides from the
Andrew Moore tutorial

K-means and Hierarchical Clustering

Note to other teachers and users of 
these slides. Andrew would be 
delighted if you found this source 
material useful in giving your own 
lectures. Feel free to use these slides 
verbatim, or to modify them to fit your 
own needs. PowerPoint originals are 
available. If you make use of a 
significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials
. Comments and corrections gratefully 
received. 
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Some 
Data

This could easily be 
modeled by a 
Gaussian Mixture 
(with 5 components)

But let’s look at an 
satisfying, friendly and 
infinitely popular 
alternative…
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Lossy CompressionSuppose you transmit the 
coordinates of points drawn 
randomly from this dataset.

You can install decoding 
software at the receiver.

You’re only allowed to send 
two bits per point.

It’ll have to be a “lossy 
transmission”.

Loss = Sum Squared Error 
between decoded coords and 
original coords.

What encoder/decoder will 
lose the least information?
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Suppose you transmit the 
coordinates of points drawn 
randomly from this dataset.

You can install decoding 
software at the receiver.

You’re only allowed to send 
two bits per point.

It’ll have to be a “lossy 
transmission”.

Loss = Sum Squared Error 
between decoded coords and 
original coords.

What encoder/decoder will 
lose the least information?

Idea One

00

1110

01

Break into a grid, 
decode each bit-pair 
as the middle of 
each grid-cell

Any Better Ideas?
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Suppose you transmit the 
coordinates of points drawn 
randomly from this dataset.

You can install decoding 
software at the receiver.

You’re only allowed to send 
two bits per point.

It’ll have to be a “lossy 
transmission”.

Loss = Sum Squared Error 
between decoded coords and 
original coords.

What encoder/decoder will 
lose the least information?

Idea Two

00

11
10

01

Break into a grid, decode 
each bit-pair as the 
centroid of all data in 
that grid-cell

Any Further Ideas?
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns”
a set of datapoints)



5

Copyright © 2001, Andrew W. Moore K-means Clustering: Slide 9

K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!
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K-means 
Start

Advance apologies: in 
Black and White this 
example will deteriorate

Example generated by 
Dan Pelleg’s super-duper 
fast K-means system:

Dan Pelleg and Andrew 
Moore. Accelerating Exact 
k-means Algorithms with 
Geometric Reasoning. 
Proc. Conference on 
Knowledge Discovery in 
Databases 1999, 
(KDD99) (available on 
www.autonlab.org/pap.html)
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
continues

…
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K-means 
terminates
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K-means Questions
• What is it trying to optimize?
• Are we sure it will terminate?
• Are we sure it will find an optimal 

clustering?
• How should we start it?
• How could we automatically choose the 

number of centers?

….we’ll deal with these questions over the next few slides
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Distortion
Given..

•an encoder function: ENCODE : ℜm → [1..k] 

•a decoder function: DECODE : [1..k] → ℜm

Define…

( )∑
=

−=
R

i
ii

1

2)]([Distortion ENCODEDECODE xx
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Distortion
Given..

•an encoder function: ENCODE : ℜm → [1..k] 

•a decoder function: DECODE : [1..k] → ℜm

Define…

We may as well write

∑
=

−=

=
R

i
i

j

i

j
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2
)(ENCODE )(Distortionso

][DECODE
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Copyright © 2001, Andrew W. Moore K-means Clustering: Slide 24

The Minimal Distortion

What properties must centers c1 , c2 , … , ck have 
when distortion is minimized?

∑
=

−=
R

i
i i

1

2
)(ENCODE )(Distortion xcx
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The Minimal Distortion (1)

What properties must centers c1 , c2 , … , ck have 
when distortion is minimized?

(1) xi  must be encoded by its nearest center

….why?

∑
=

−=
R

i
i i

1

2
)(ENCODE )(Distortion xcx
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..at the minimal distortion
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The Minimal Distortion (1)

What properties must centers c1 , c2 , … , ck have 
when distortion is minimized?

(1) xi  must be encoded by its nearest center

….why?

∑
=

−=
R

i
i i

1

2
)(ENCODE )(Distortion xcx

2

},...,{
)(ENCODE )(minarg

21

ji
kj

i
cxc

cccc
x −=

∈

..at the minimal distortion

Otherwise distortion could be 
reduced by replacing ENCODE[xi] 
by the nearest center
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The Minimal Distortion (2)

What properties must centers c1 , c2 , … , ck have 
when distortion is minimized?

(2) The partial derivative of Distortion with respect 
to each center location must be zero.

∑
=

−=
R

i
i i

1

2
)(ENCODE )(Distortion xcx
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(2) The partial derivative of Distortion with respect 
to each center location must be zero.
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Center cj .
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(2) The partial derivative of Distortion with respect 
to each center location must be zero.
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At the minimum distortion

What properties must centers c1 , c2 , … , ck have when 
distortion is minimized?

(1) xi  must be encoded by its nearest center

(2) Each Center must be at the centroid of points it owns.

∑
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−=
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i
i i

1

2
)(ENCODE )(Distortion xcx
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Improving a suboptimal configuration…

What properties can be changed for centers c1 , c2 , … , ck
when distortion is not minimized?

(1) Change encoding so that xi  is encoded by its nearest center

(2) Set each Center to the centroid of points it owns.

There’s no point applying either operation twice in succession.

But it can be profitable to alternate.

…And that’s K-means!

Easy to prove this procedure will terminate in a state at 
which neither (1) or (2) change the configuration. Why?

∑
=

−=
R

i
i i

1

2
)(ENCODE )(Distortion xcx
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Improving a suboptimal configuration…

What properties can be changed for centers c1 , c2 , … , ck
when distortion is not minimized?

(1) Change encoding so that xi  is encoded by its nearest center

(2) Set each Center to the centroid of points it owns.

There’s no point applying either operation twice in succession.

But it can be profitable to alternate.

…And that’s K-means!

Easy to prove this procedure will terminate in a state at 
which neither (1) or (2) change the configuration. Why?

∑
=

−=
R

i
i i

1

2
)(ENCODE )(Distortion xcxThere are only a finite number of ways of partitioning R 

records into k groups.

So there are only a finite number of possible 

configurations in which all Centers are the centroids of 

the points they own.

If the configuration changes on an iteration, it must have 

improved the distortion.

So each time the configuration changes it must go to a 

configuration it’s never been to before.

So if it tried to go on forever, it would eventually run out 

of configurations.
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Will we find the optimal 
configuration?

• Not necessarily.
• Can you invent a configuration that has 

converged, but does not have the minimum 
distortion?
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Will we find the optimal 
configuration?

• Not necessarily.
• Can you invent a configuration that has 

converged, but does not have the minimum 
distortion? (Hint: try a fiendish k=3 configuration here…)
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Will we find the optimal 
configuration?

• Not necessarily.
• Can you invent a configuration that has 

converged, but does not have the minimum 
distortion? (Hint: try a fiendish k=3 configuration here…)
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Trying to find good optima
• Idea 1: Be careful about where you start
• Idea 2: Do many runs of k-means, each 

from a different random start configuration
• Many other ideas floating around.
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Trying to find good optima
• Idea 1: Be careful about where you start
• Idea 2: Do many runs of k-means, each 

from a different random start configuration
• Many other ideas floating around.

Neat trick:
Place first center on top of randomly chosen datapoint.
Place second center on datapoint that’s as far away as 
possible from first center

:
Place j’th center on datapoint that’s as far away as 
possible from the closest of Centers 1 through j-1

:
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Choosing the number of Centers
• A difficult problem
• Most common approach is to try to find the 

solution that minimizes the Schwarz 
Criterion (also related to the BIC)

 log)parameters(# Distortion Rλ+

 log Distortion Rλmk+=

m=#dimensions k=#Centers R=#Records
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Common uses of K-means
• Often used as an exploratory data analysis tool
• In one-dimension, a good way to quantize real-

valued variables into k non-uniform buckets
• Used on acoustic data in speech understanding to 

convert waveforms into one of k categories 
(known as Vector Quantization)

• Also used for choosing color palettes on old 
fashioned graphical display devices!
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What you should know
• The implementation of K-means
• The theory behind K-means as an 

optimization algorithm
• How K-means can get stuck
• How K-means is another algorithm besides 

EM for handling the special case of Gaussian 
Mixture Models with unknown but equal 
covariances of the form σ2I


