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Example: Binomial Experiment
(Statistics 101)
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Head Tall

Thumb tack

¢ When tossed, it can land in one of two positions:
Head or Tail

¢ We denote by #the (unknown) probability P(H).
Estimation task:

# Given a sequence of toss samples x{1], x[2], ..,
x[M] we want to estimate the probabilities P(H)= 0
and AT) =1-2¢6




Statistical Parameter Fitting

e Consider instances x{1], x[2], .., x[M]

such that
o The set of values that x can take is known } "
i.i.d.
n

o Each is sampled from the same distributio
samples

o Each sampled independently of the rest

+Here we focus on multinomial distributions
o Only finitely many possible values for x
o Special case: binomial, with values H(ead) and T(ail)

The Likelihood Function

¢ How good is a particular 6?
It depends on how likely it is to generate the
observed data

L(6:D)=P(D|06)=]]P(xIm]1l6)

# The likelihood for the sequence H, T, T, H, H is

LN\

L(6:D)=6-(1-6)-(1-6)-6-6

L(O:D)




Maximum Likelihood Estimation

MLE Principle:

Choose parameters that maximize the
likelihood function

# This is one of the most commonly used
estimators in statistics

+ Intuitively appealing

Example: MLE in Binomial Data

# It can be shown that the MLE for the probability

of heads is given by A
H

We prove this
after the next slide

0=
N, +

(which coincides with what one would expect)

Example:

(NgNt) =(3.2)

L(O:D)

MLE estimate is 3/5 = 0.6
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From Binomial to Multinomial

+ For example, suppose X can have the values
12..,K

+We want to learn the parameters 0, 0 ,. ..., 6
Observations:

o N, N, ..., Ni- the number of times each outcome
is observed

K
Likelihood function:  L(®:D)=[]6,™
k=1

A N/( We i

_ _ prove this on
MLE: Ok N next several slides
[
/

MLE for Multinomial

Theorem: For the multinomial distribution, the MLE for the
probability P(x=Kk) is given by

ékz Nk

2N,

7 K
Proof: The likelihood functionis L(®:D) = H@ka
k=1

To maximize it, it is equivalent to maximize the log-likelihood

LL(6,,6,,....6)=InL=>"N,In6,
l

But we must impose the constraints

> 6,=1land 6,20 W/
L




MLE for Multinomial (cont.)

We use the method of Lagrange multipliers.

Since there is one constraint equation, we introduce
one Lagrange multiplier A

We want to find 6,,6,,...,6, and A so that the
Lagrangian function

G(0,,...,0;4) = LL(Hl,...,QK)—/l(ZQE—lj

attains a maximum as the ¢, values vary (and a
minimum as A varies).

MLE for Multinomial (cont.)

+ Take partial derivatives:

N,y By

00, 6, Er
¢ Equate to zero and rearrange:
N
6 =—* vk, > 6,=1
A 7

eThus 6, oc N, VK.
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MLE for Multinomial (cont.)

¢ Normalizing so the probabilities sum to 1 yields
Nk

2N,
4
# To see that this is a maximum as the 6, values
vary, it's sufficient to observe that the second partial
derivatives of G satisfy
2 2
oG =0 Viz], 8(2:_N2i<0 Vi
006,00, 7/ 0

0, = k.
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Is MLE all we need?

¢ Suppose that after 10 observations,
o ML estimates P(H) = 0. 7 for the thumbtack
o Would you bet on heads for the next toss?

+ Suppose now that after 10 observations,
o ML estimates P(H) = 0. 7for a coin
o Would you place the same bet?
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Bayesian Inference

Frequentist Approach:

¢ Assumes there is an unknown but fixed parameter 6
+ Estimates 6 with some confidence

+ Prediction by using the estimated parameter value

Bayesian Approach:
¢ Represents uncertainty about the unknown parameter
+ Uses probability to quantify this uncertainty:
o Unknown parameters as random variables
+ Prediction follows from the rules of probability:
o Expectation over the unknown parameters
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Example: Binomial Data Revisited

# Prior: uniform for 8in [0,1]

e AO)=1
o Then A6 | D) is proportional to the likelihood L(&:D)

A0\ AL]... M) AXL]... XIM)| 6)- AO)

(N, N7) = (41)

¢ MLE for AX=H)is4/5=0.8
+ Bayesian prediction is o 02 04 06 08 1
PXIM+11= H | D) = [0.£(0] D) = 2 = 07142..
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Bayesian Inference and MLE

# In our example, MLE and Bayesian prediction
differ

¢ But...
If: prior is well-behaved (i.e., does not assign 0
density to any “feasible” parameter value)
Then: both MLE and Bayesian prediction
converge to the same value as the number of
training data increases
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Dirichlet Priors

¢ Recall that the likelihood function is
K
L©:D)=]]6
k=1

+ A Dirichlet prior with hyperparameters «;,...,ay is
defined as

K
P(®) = [T0,%" for legal 6., 04
k=1
Then the posterior has the same form, with

hyperparameters a#N ,,...,ax*N ¢
K K K
P(® | D) e P(@)P(D | @) oC Hﬁkak_lngk/vk — Heka,(+Nk—1
k=1 k=1

k=1
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Dirichlet Priors (cont.)

¢ We can compute the prediction on a new event
in closed form:

« If A®) is Dirichlet with hyperparameters «;,...,ay
then

a 3 .
P(X[1]1=k) = Iek P(O)db = Z(/; I We won’t prove this

L

L

+ Since the posterior is also Dirichlet, we get
a, +N,

PIXIM 1=K D)= [0, AO1D)0 = < ="
/
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Dirichlet Priors -- Example

5 T
Dirichlet(1,1) =
45 Dirichlet(2,2)
: Dirichlet(0.5,0.5) =
4 Dirichlet(5,5) =
35
3
25 1
2
15
1
0.5 7 j <
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Prior Knowledge

¢ The hyperparameters ¢,,...,a, can be thought of
as “imaginary” counts from our prior experience

+ Equivalent sample size = a,*...+ay

¢ The larger the equivalent sample size the more
confident we are in our prior
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Effect of Priors

Prediction of A X=H') after seeing data with N, =
0.25-Nrfor different sample sizes

0.55 0.6

05 Different strength a,, + ar 0.5 Fixed strength o, + a

0.45 Fixed ratio o,/ ar 0z Different ratio ¢,/ o

20 40 60 80 100
20
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Effect of Priors (cont.)

+In real data, Bayesian estimates are less
sensitive to noise in the data

0.7

MLE —

Dirichlet(.5,.5)
~ 06 Dirichlet(1,1) —
Q Dirichlet(5,5) —
< os Dirichlet(10,10) —

Il Il Il Il N ' ' ' '
5 10 15 20 25 30 35 40 45 50

1
Toss Result

N
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One reason to prefer Bayesian method

# If any value fails to occur in the training data, MLE
for the corresponding probability will be zero

+ But even with uniform prior, Bayesian estimate for
this same probability will be non-zero

+ Probability estimates of zero can have very bad
effects on just about any learning algorithm

e Only want zero probability estimates when non-
occurrence of an event is justified by prior belief
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