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Example: Binomial Experiment
(Statistics 101)

When tossed, it can land in one of two positions: 
Head or Tail
We denote by θ the (unknown) probability P(H).

Estimation task:
Given a sequence of toss samples x[1], x[2], …, 
x[M] we want to estimate the probabilities P(H)= θ
and P(T) = 1 - θ

Head Tail

Thumb tack
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Statistical Parameter Fitting
Consider instances x[1], x[2], …, x[M]
such that

The set of values that x can take is known
Each is sampled from the same distribution
Each sampled independently of the rest

Here we focus on multinomial distributions
Only finitely many possible values for x
Special case: binomial, with values H(ead) and T(ail)

i.i.d.
samples
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The Likelihood Function
How good is a particular θ?

It depends on how likely it is to generate the 
observed data

The likelihood for the sequence H,T, T, H, H is

∏ θ=θ=θ
m

mxPDPDL )|][()|():(

θ⋅θ⋅θ−⋅θ−⋅θ=θ )1()1():( DL

0 0.2 0.4 0.6 0.8 1θ

L(
θ

:D
)



3

5

Maximum Likelihood Estimation

MLE Principle:
Choose parameters that maximize the 

likelihood function

This is one of the most commonly used 
estimators in statistics

Intuitively appealing
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Example: MLE in Binomial Data

It can be shown that the MLE for the probability 
of heads is given by

(which coincides with what one would expect)
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Example:
(NH,NT ) = (3,2)

MLE estimate is 3/5 = 0.6

TH

H

NN
N
+

=θ̂
We prove this 
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From Binomial to Multinomial

For example, suppose X can have the values 
1,2,…,K
We want to learn the parameters θ 1, θ 2. …, θ K

Observations:
N1, N2, …, NK - the number of times each outcome 
is observed

Likelihood function:

MLE:
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MLE for Multinomial
Theorem: For the multinomial distribution, the MLE for the 

probability P(x=k) is given by

Proof: The likelihood function is                             

To maximize it, it is equivalent to maximize the log-likelihood

But we must impose the constraints
and
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MLE for Multinomial (cont.)

We use the method of Lagrange multipliers.
Since there is one constraint equation, we introduce 

one Lagrange multiplier
We want to find                          and       so that the 

Lagrangian function

attains a maximum as the        values vary (and a 
minimum as      varies).
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MLE for Multinomial (cont.)

Take partial derivatives:

Equate to zero and rearrange:

Thus
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MLE for Multinomial (cont.)

Normalizing so the probabilities sum to 1 yields

To see that this is a maximum as the       values 
vary, it’s sufficient to observe that the second partial 
derivatives of G satisfy
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Is MLE all we need?

Suppose that after 10 observations, 
ML estimates P(H) = 0.7 for the thumbtack
Would you bet on heads for the next toss?

Suppose now that after 10 observations,
ML estimates P(H) = 0.7 for a coin
Would you place the same bet? 
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Bayesian Inference
Frequentist Approach:

Assumes there is an unknown but fixed parameter θ
Estimates θ with some confidence 
Prediction by using the estimated parameter value

Bayesian Approach:
Represents uncertainty about the unknown parameter
Uses probability to quantify this uncertainty: 

Unknown parameters as random variables
Prediction follows from the rules of probability:

Expectation over the unknown parameters
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Example: Binomial Data Revisited

Prior: uniform for θ in [0,1]
P(θ ) = 1

Then P(θ |D) is proportional to the likelihood L(θ :D)

(NH,NT ) = (4,1)

MLE for P(X = H ) is 4/5 = 0.8 
Bayesian prediction is
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Bayesian Inference and MLE

In our example, MLE and Bayesian prediction 
differ
But…
If: prior is well-behaved (i.e., does not assign 0 
density to any “feasible” parameter value)
Then: both MLE and Bayesian prediction 
converge to the same value as the number of 
training data increases
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Dirichlet Priors

Recall that the likelihood function is 

A Dirichlet prior with hyperparameters  α1,…,αK  is 
defined as

for legal θ 1,…, θ K  

Then the posterior has the same form, with 

hyperparameters  α1+N 1,…,αK +N K 
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Dirichlet Priors (cont.)

We can compute the prediction on a new event 
in closed form: 
If P(Θ) is Dirichlet with hyperparameters α1,…,αK  
then

Since the posterior is also Dirichlet, we get
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Dirichlet Priors -- Example
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Dirichlet(1,1)
Dirichlet(2,2)
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Prior Knowledge

The hyperparameters α1,…,αK can be thought of 
as “imaginary” counts from our prior experience 

Equivalent sample size = α1+…+αK

The larger the equivalent sample size the more 
confident we are in our prior
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Effect of Priors

Prediction of P(X=H ) after seeing data with NH = 
0.25•NT for different sample sizes
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Effect of Priors (cont.)
In real data, Bayesian estimates are less 
sensitive to noise in the data
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One reason to prefer Bayesian method

If any value fails to occur in the training data, MLE 
for the corresponding probability will be zero
But even with uniform prior, Bayesian estimate for 
this same probability will be non-zero
Probability estimates of zero can have very bad 
effects on just about any learning algorithm

Only want zero probability estimates when non-
occurrence of an event is justified by prior belief


